Skip to main content

Advertisement

Log in

Neurological abnormality detection from electroencephalography data: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The efficient detection of neurological abnormalities (disorders) is very important in clinical diagnosis for modern medical applications. As stated by the World Health Organization’s (WHO), brain diseases like Alzheimer’s disease, epilepsy, and stroke to headache, infected almost one billion people globally. Electroencephalography (EEG) is the current reference standard for diagnosis of most of the neurological diseases as it is inexpensive, bearable, and non-invasive compared to other tests (e.g. computed tomography, positron emission tomography, mini-mental state examination, and magnetic resonance imaging). Many studies are performed using EEG signals to detect the neurodegenerative abnormalities in the preliminary stage. This paper attempts to provide a comprehensive survey on the recent studies which are made using EEG signals to detect the neurological diseases: Dementia, Mild Cognitive Impairment, Alzheimer, Schizophrenia, and Parkinson. This paper focuses on the following key research questions: (1) what are the key components of EEG signal processing, (2) what algorithms have been used in this processing, (3) which signal processing techniques have received more attention? The paper provides a clear description of the mentioned neuro-diseases along with the relevant studies. Moreover, this study presents all the recent efforts of the methods that are obtained various step of signal data processing including feature extraction and classification phases. Finally, an elaborated comparison of the existing efforts with their drawbacks and performance are reported. This will guide the medical field researchers and technology experts to discover more accurate solutions for neuro-diseases and come up with a neurological abnormality detection framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ABS (2016) Causes of death, australia, 2014

  • Aghajani H, Zahedi E, Jalili M, Keikhosravi A, Vahdat BV (2013) Diagnosis of early alzheimer's disease based on eeg source localization and a standardized realistic head model. IEEE J Biomed Health Inform 17(6):1039–1045

    Article  Google Scholar 

  • Akut R (2019) Wavelet based deep learning approach for epilepsy detection. Health Inf Sci Syst 7(1):1–9

    Article  Google Scholar 

  • Al Ghayab HR, Li Y, Siuly S, Abdulla S (2019) A feature extraction technique based on tunable q-factor wavelet transform for brain signal classification. J Neurosci Methods 312:43–52

    Article  Google Scholar 

  • Al-Jumeily D, Iram S, Hussain AJ, Francois-Benois V, Fergus P (2014) Early detection method of Alzheimer’s disease using EEG signals. In: International Conference on Intelligent Computing. Springer, Cham, pp 25–33

  • Al-Qazzaz NK, Ali SHB, Ahmad SA, Chellappan K, Islam M, Escudero J (2014) Role of EEG as biomarker in the early detection and classification of dementia. Sci World J 2014(906038):1–16

    Article  Google Scholar 

  • Alvi AM, Basher SF, Himel AH, Sikder T, Islam M, Rahman RM (2017) An adaptive grayscale image de-noising technique by fuzzy inference system. In: 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). IEEE, pp 1301–1308

  • Alvi AM, Tasneem N, Hasan A, Akther SB (2019) A Study to Find the Impacts of Strikes on Students and Local Shopkeepers in Bangladesh. ICITST-WorldCIS-WCST-WCICSS-2019 Proceedings, 81–86. https://doi.org/10.20533/icitst.worldcis.wcst.wcicss.2019.0012

  • Alvi AM, Siuly S, Wang H, Sun L, Cao J (2020a) An adaptive image smoothing technique based on localization. In: Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020), pp 866–873

  • Alvi A, Tasneem N, Hasan A, Akther S (2020b) Impacts of Blockades and Strikes in Dhaka: A Survey. Int J Innov Bus Strat 6(1):369–377

    Article  Google Scholar 

  • American Psychiatric Association, A (1980) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington, DC, vol 3.

  • Amezquita-Sanchez JP, Adeli H (2015) A new music-empirical wavelet transform methodology for time-frequency analysis of noisy nonlinear and non-stationary signals. Digital Signal Process 45:55–68

    Article  Google Scholar 

  • Amezquita-Sanchez JP, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the alzheimer's disease using eeg signals. J Neurosci Methods 322:88–95

    Article  Google Scholar 

  • Anuradha G, Jamal N, Rafiammal S (2017) Detection of dementia in EEG signal using dominant frequency analysis. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI). IEEE, pp 710–714

  • Arisi I, Bertolazzi P, Cappelli E, Conte F, Cumbo F, Fiscon G, Sonnessa M, Taglino F (2018) An ontology-based approach to improve data querying and organization of Alzheimer’s Disease data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp 2732–2734

  • Bagattini C, Mutanen TP, Fracassi C, Manenti R, Cotelli M, Ilmoniemi RJ, Miniussi C, Bortoletto M (2019) Predicting alzheimer's disease severity by means of tms-eeg coregistration. Neurobiol Aging 80:38–45

    Article  Google Scholar 

  • Baradits M, Kakuszi B, Bálint S, Fullajtár M, Mód L, Bitter I, Czobor P (2019) Alterations in resting-state gamma activity in patients with schizophrenia: a high-density eeg study. Eur Arch Psychiatry Clin Neurosci 269(4):429–437

    Article  Google Scholar 

  • Bi X, Wang H (2019) Early alzheimer's disease diagnosis based on eeg spectral images using deep learning. Neural Netw 114:119–135

    Article  Google Scholar 

  • Bibina V, Chakraborty U, Lourde M, Kumar A (2018) Signal processing methods of diagnosing alzheimer’s disease using eeg a technical review. Int J Biol Biomed Eng 12(2018):100–113

    Google Scholar 

  • Boostani R, Sadatnezhad K, Sabeti M (2009) An efficient classifier to diagnose of schizophrenia based on the eeg signals. Expert Syst Appl 36(3):6492–6499

    Article  Google Scholar 

  • Bracco L, Gallato R, Grigoletto F, Lippi A, Lepore V, Bino G, Lazzaro MP, Carella F, Piccolo T, Pozzilli C et al (1994) Factors affecting course and survival in alzheimer's disease: a 9-year longitudinal study. Arch Neurol 51(12):1213–1219

    Article  Google Scholar 

  • Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH (2018) Systematic review on resting-state eeg for alzheimer’s disease diagnosis and progression assessment. Dis Mark 2018(5174815):1–26

  • Cedazo-Minguez A, Winblad B (2010) Biomarkers for alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45(1):5–14

    Article  Google Scholar 

  • Chiang HS, Pao SC (2016) An eeg-based fuzzy probability model for early diagnosis of alzheimer's disease. J Med Syst 40(5):125

    Article  Google Scholar 

  • Das K, Pachori RB (2021) Schizophrenia detection technique using multivariate iterative filtering and multichannel eeg signals. Biomed Signal Process Control 67:102525

    Article  Google Scholar 

  • Deb P, Sefton M (1996) The distribution of a lagrange multiplier test of normality. Econ Lett 51(2):123–130

    Article  MATH  Google Scholar 

  • Demir F, Sobahi N, Siuly S, Sengur A (2021) Exploring Deep Learning Features For Automatic Classification Of Human Emotion Using EEG Rhythms. IEEE Sens J 21(13):14923–14930

    Article  Google Scholar 

  • Devia C, Mayol-Troncoso R, Parrini J, Orellana G, Ruiz A, Maldonado PE, Egaña JI (2019) Eeg classification during scene free-viewing for schizophrenia detection. IEEE Trans Neural Syst Rehabil Eng 27(6):1193–1199

    Article  Google Scholar 

  • Durongbhan P, Zhao Y, Chen L, Zis P, De Marco M, Unwin ZC, Venneri A, He X, Li S, Zhao Y et al (2019) A dementia classification framework using frequency and time-frequency features based on eeg signals. IEEE Trans Neural Syst Rehabil Eng 27(5):826–835

    Article  Google Scholar 

  • Duthey B (2013) Background paper 6.11: Alzheimer disease and other dementias. A Public Health Approach Innov 6:1–74

    Google Scholar 

  • Fiscon G, Weitschek E, Felici G, Bertolazzi P, De Salvo S, Bramanti P, De Cola MC (2014) Alzheimer's disease patients classification through EEG signals processing. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, pp 105–112

  • Fiscon G, Weitschek E, Cialini A, Felici G, Bertolazzi P, De Salvo S, Bramanti A, Bramanti P, De Cola MC (2018) Combining eeg signal processing with supervised methods for alzheimer's patients classification. BMC Med Inform Decis Mak 18(1):1–10

    Article  Google Scholar 

  • Fraga FJ, Falk TH, Kanda PA, Anghinah R (2013) Characterizing alzheimer's disease severity via resting-awake eeg amplitude modulation analysis. PLoS ONE 8(8):e72240

    Article  Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113(5):702–712

    Article  Google Scholar 

  • Haas LF (2003) Hans berger (1873–1941), richard caton (1842–1926), and electroencephalography. J Neurol Neurosurg Psychiatry 74(1):9–9

    Article  Google Scholar 

  • Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde AL, Jessen F, Hoessler YC et al (2010) Biomarkers for alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discovery 9(7):560–574

    Article  Google Scholar 

  • Hasan MA, Tasneem N, Akther SB, Das K, Alvi AM (2019) An analysis on recent mobile Application trend in Bangladesh. In: Workshops of the International Conference on Advanced Information Networking and Applications, Springer, Cham, pp 195–204

  • Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in eeg signals using tunable-q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 137:247–259

    Article  Google Scholar 

  • Helzner EP, Scarmeas N, Cosentino S, Tang M, Schupf N, Stern Y (2008) Survival in alzheimer disease: a multiethnic, population-based study of incident cases. Neurology 71(19):1489–1495

    Article  Google Scholar 

  • Heyn SN, Davis CP (2018) Parkinson’s disease symptoms, signs, causes, stages, and treatment. https://www.medicinenet.com/parkinsons_disease/article.htm, accessed 20 March 2020

  • Horvath A, Szűcs A, Barcs G, Kamondi A (2017) Sleep eeg detects epileptiform activity in alzheimer's disease with high sensitivity. J alzheimer's Dis 56(3):1175–1183

    Article  Google Scholar 

  • Houmani N, Vialatte F, Gallego-Jutglà E, Dreyfus G, Nguyen-Michel VH, Mariani J, Kinugawa K (2018) Diagnosis of alzheimer's disease with electroencephalography in a differential framework. PLoS ONE 13(3):e0193607

    Article  Google Scholar 

  • Hussain W, Sadiq MT, Siuly S, Rehman AU (2021) Epileptic seizure detection using 1 d-convolutional long short-term memory neural networks. Appl Acoust 177:107941

    Article  Google Scholar 

  • International AD (2020) The global voice on dementia: Dementia statistics

  • Jahmunah V, Oh SL, Rajinikanth V, Ciaccio EJ, Cheong KH, Arunkumar N, Acharya UR (2019) Automated detection of schizophrenia using nonlinear signal processing methods. Artif Intell Med 100:101698

    Article  Google Scholar 

  • Jalili M, Knyazeva MG (2011) Eeg-based functional networks in schizophrenia. Comput Biol Med 41(12):1178–1186

    Article  Google Scholar 

  • Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique 163–172

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611

    Article  Google Scholar 

  • Kabir E, Zhang Y et al (2016) Epileptic seizure detection from eeg signals using logistic model trees. Brain Inform 3(2):93–100

    Article  Google Scholar 

  • Kashefpoor M, Rabbani H, Barekatain M (2016) Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. J Med Signals Sens 6(1):25

    Article  Google Scholar 

  • Khare SK, Bajaj V, Siuly S, Sinha GR (2020) Classification of schizophrenia patients through empirical wavelet transformation using electroencephalogram signals. In: Modelling and Analysis of Active Biopotential Signals in Healthcare, vol 1. IOP Publishing, pp 1–26

  • Khatun S, Morshed BI, Bidelman GM (2019) A single-channel eeg-based approach to detect mild cognitive impairment via speech-evoked brain responses. IEEE Trans Neural Syst Rehabil Eng 27(5):1063–1070

    Article  Google Scholar 

  • Kim D, Kim K (2018) Detection of early stage Alzheimer’s disease using EEG relative power with deep neural network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 352–355

  • Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980

  • Lekshmi GS, Chacko B (2016) Robust Alzheimer’s disease severity classification in compressed EEG signal. In: National Conference on Emerging Trends in Engineering and Technology (NCETET’16). pp 22–28

  • Li F, Wang J, Liao Y, Yi C, Jiang Y, Si Y, Peng W, Yao D, Zhang Y, Dong W et al (2019) Differentiation of schizophrenia by combining the spatial eeg brain network patterns of rest and task p300. IEEE Trans Neural Syst Rehabil Eng 27(4):594–602

    Article  Google Scholar 

  • Lu J, Plataniotis KN, Venetsanopoulos AN, Li SZ (2006) Ensemble-based discriminant learning with boosting for face recognition. IEEE Trans Neural Netw 17(1):166–178

    Article  Google Scholar 

  • Mazaheri A, Segaert K, Olichney J, Yang JC, Niu YQ, Shapiro K, Bowman H (2018) Eeg oscillations during word processing predict mci conversion to alzheimer's disease. NeuroImage: Clinical 17:188–197

    Article  Google Scholar 

  • Miften FS, Diykh M, Abdulla S, Siuly S, Green JH, Deo RC (2021) A new framework for classification of multi-category hand grasps using emg signals. Artif Intell Med 112:102005

    Article  Google Scholar 

  • Muniz CF, Shenoy AV, O'Connor KL, Bechek SC, Boyle EJ, Guanci MM, Tehan TM, Zafar SF, Cole AJ, Patel AB et al (2016) Clinical development and implementation of an institutional guideline for prospective eeg monitoring and reporting of delayed cerebral ischemia. J Clinical Neurophysiol Official Publ Am Electroencephalogr Soc 33(3):217

    Article  Google Scholar 

  • Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 32(15):10927–10933

    Article  Google Scholar 

  • Organization WH, et al. (2012) Dementia: a public health priority. World Health Organization

  • Pascual-Marqui RD et al (2002) Standardized low-resolution brain electromagnetic tomography (sloreta): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    Google Scholar 

  • Pasha A, Latha PH (2020) Bio-inspired dimensionality reduction for parkinson's disease (pd) classification. Health Inf Sci Syst 8(1):1–22

    Article  Google Scholar 

  • Paul S, Alvi AM, Nirjhor MA, Rahman S, Orcho AK, Rahman RM (2017) Analyzing accident prone regions by clustering. In: Asian Conference on Intelligent Information and Database Systems. Springer, Cham, pp 3–13

  • Paul S, Alvi AM, Rahman RM (2021) An analysis of the most accident prone regions within the dhaka metropolitan region using clustering. Int J Adv Intell Paradigms 18(3):294–315

    Article  Google Scholar 

  • Phang CR, Noman F, Hussain H, Ting CM, Ombao H (2019) A multi-domain connectome convolutional neural network for identifying schizophrenia from eeg connectivity patterns. IEEE J Biomed Health Inform 24(5):1333–1343

    Article  Google Scholar 

  • Piano C, Mazzucchi E, Bentivoglio AR, Losurdo A, Calandra Buonaura G, Imperatori C, Cortelli P, Della Marca G (2017) Wake and sleep eeg in patients with huntington disease: an eloreta study and review of the literature. Clin EEG Neurosci 48(1):60–71

    Article  Google Scholar 

  • Platt J et al (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 10(3):61–74

    Google Scholar 

  • Poil SS, De Haan W, van der Flier WM, Mansvelder HD, Scheltens P, Linkenkaer-Hansen K (2013) Integrative eeg biomarkers predict progression to alzheimer's disease at the mci stage. Front Aging Neurosci 5:58

    Article  Google Scholar 

  • Prince MJ, Wimo A, Guerchet MM, Ali GC, Wu YT, Prina M (2015) World Alzheimer Report 2015-The Global Impact of Dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International, np

  • Rabiner L, Juang B (1986) An introduction to hidden markov models. IEEE ASSP Magaz 3(1):4–16

    Article  Google Scholar 

  • Rodrigues PM, Freitas D, Teixeira JP, Bispo B, Alves D, Garrett C (2018) Electroencephalogram hybrid method for alzheimer early detection. Proc Comput Sci 138:209–214

    Article  Google Scholar 

  • Ross TJ et al (2004) Fuzzy logic with engineering applications, vol 2. Wiley Online Library, New York

    MATH  Google Scholar 

  • Sharma N, Kolekar M, Jha K, Kumar Y (2019) Eeg and cognitive biomarkers based mild cognitive impairment diagnosis. IRBM 40(2):113–121

    Article  Google Scholar 

  • Sharma N, Kolekar MH, Jha K (2020) Iterative filtering decomposition based early dementia diagnosis using eeg with cognitive tests. IEEE Trans Neural Syst Rehabil Eng 28(9):1890–1898

    Article  Google Scholar 

  • Sharma N, Kolekar MH, Jha K (2021) Eeg based dementia diagnosis using multi-class support vector machine with motor speed cognitive test. Biomed Signal Process Control 63:102102

    Article  Google Scholar 

  • Silver J, Schwab ME, Popovich PG (2015) Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 7(3):a020602

    Article  Google Scholar 

  • Siuly S, Li Y (2015) Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic eeg signal classification. Comput Methods Programs Biomed 119(1):29–42

    Article  Google Scholar 

  • Siuly S, Zhang Y (2016) Medical big data: neurological diseases diagnosis through medical data analysis. Data Sci Eng 1(2):54–64

    Article  Google Scholar 

  • Siuly S, Li Y, Zhang Y (2016) Significance of eeg signals in medical and health research. In: EEG Signal Analysis and Classification. Springer, Cham, pp 23–41

  • Siuly S, Alcin OF, Bajaj V, Sengur A, Zhang Y (2018) Exploring hermite transformation in brain signal analysis for the detection of epileptic seizure. IET Sci Meas Technol 13(1):35–41

    Article  Google Scholar 

  • Siuly S, Bajaj V, Sengur A, Zhang Y (2019) An advanced analysis system for identifying alcoholic brain state through eeg signals. Int J Autom Comput 16(6):737–747

    Article  Google Scholar 

  • Siuly S, Alçin ÖF, Kabir E, Şengür A, Wang H, Zhang Y, Whittaker F (2020) A new framework for automatic detection of patients with mild cognitive impairment using resting-state eeg signals. IEEE Trans Neural Syst Rehabil Eng 28(9):1966–1976

    Article  Google Scholar 

  • Siuly S, Khare SK, Bajaj V, Wang H, Zhang Y (2020) A computerized method for automatic detection of schizophrenia using eeg signals. IEEE Trans Neural Syst Rehabil Eng 28(11):2390–2400

    Article  Google Scholar 

  • Sridhar S, Manian V (2020) Eeg and deep learning based brain cognitive function classification. Computers 9(4):104

    Article  Google Scholar 

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20(4):327–348

    Article  Google Scholar 

  • Stoica P, Moses RL (1997) Introduction to spectral analysis. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Supriya S, Siuly S, Wang H, Cao J, Zhang Y (2016) Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access 4:6554–6566

    Article  Google Scholar 

  • Supriya S, Siuly S, Zhang Y (2016) Automatic epilepsy detection from eeg introducing a new edge weight method in the complex network. Electron Lett 52(17):1430–1432

    Article  Google Scholar 

  • Supriya S, Siuly S, Wang H, Zhang Y (2018) EEG sleep stages analysis and classification based on weighed complex network features. IEEE Trans Emerg Topics Comput Intell 5(2):236–246

    Article  Google Scholar 

  • Supriya S, Siuly S, Wang H, Zhang Y (2021a) Epilepsy Detection from EEG using Complex Network Techniques: A Review. IEEE Rev Biomed Eng

  • Supriya S, Siuly S, Wang H, Zhang Y (2021) New feature extraction for automated detection of epileptic seizure using complex network framework. Appl Acoust 180:108098

    Article  Google Scholar 

  • Tawhid M, Siuly S, Wang H (2020) Diagnosis of autism spectrum disorder from eeg using a time-frequency spectrogram image-based approach. Electron Lett 56(25):1372–1375

    Article  Google Scholar 

  • Wang J, Barstein J, Ethridge LE, Mosconi MW, Takarae Y, Sweeney JA (2013) Resting state eeg abnormalities in autism spectrum disorders. J Neurodev Disord 5(1):24

    Article  Google Scholar 

  • Watanabe Y, Kobayashi Y, Tanaka M, Asada T, Ishii K, Yagi T (2017) Analysis for Alzheimer's disease using cross-correlation of EEG data. In: 2017 10th Biomedical Engineering International Conference (BMEiCON). IEEE, pp 1–5

  • WHO (2006) Neurological disorders: public health challenges. World Health Organization

  • WHO (2019) Schizophrenia. https://www.who.int/news-room/fact-sheets/detail/schizophrenia, accessed 26 March 2020

  • Yang S, Bornot JMS, Wong-Lin K, Prasad G (2019) M/eeg-based bio-markers to predict the mci and alzheimer's disease: a review from the ml perspective. IEEE Trans Biomed Eng 66(10):2924–2935

    Article  Google Scholar 

  • Yin J, Cao J, Siuly S, Wang H (2019) An integrated mci detection framework based on spectral-temporal analysis. Int J Autom Comput 16(6):786–799

    Article  Google Scholar 

  • Yuvaraj R, Acharya UR, Hagiwara Y (2018) A novel parkinson's disease diagnosis index using higher-order spectra features in eeg signals. Neural Comput Appl 30(4):1225–1235

    Article  Google Scholar 

  • Zarei R, He J, Siuly S, Huang G, Zhang Y (2019) Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals. BioMed research international, 2019

  • Zhou N, Wang L (2007) A modified t-test feature selection method and its application on the hapmap genotype data. Genom Proteom Bioinform 5(3–4):242–249

    Article  Google Scholar 

Download references

Funding

Funding was provided by Centre of Excellence in Cognition and its Disorders, Australian Research Council (Grant Number LP170100934).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashik Mostafa Alvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvi, A.M., Siuly, S. & Wang, H. Neurological abnormality detection from electroencephalography data: a review. Artif Intell Rev 55, 2275–2312 (2022). https://doi.org/10.1007/s10462-021-10062-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10062-8

Keywords

Navigation