Genetic programming in civil engineering: advent, applications and future trends

Abstract

Over the past two decades, machine learning has been gaining significant attention for solving complex engineering problems. Genetic programing (GP) is an advanced framework that can be used for a variety of machine learning tasks. GP searches a program space instead of a data space without a need to pre-defined models. This method generates transparent solutions that can be easily deployed for practical civil engineering applications. GP is establishing itself as a robust intelligent technique to solve complicated civil engineering problems. This paper provides a review of the GP technique and its applications in the civil engineering arena over the last decade. We discuss the features of GP and its variants followed by their potential for solving various civil engineering problems. We finally envision the potential research avenues and emerging trends for the application of GP in civil engineering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274. https://doi.org/10.1108/02644401111118132

    Article  MATH  Google Scholar 

  2. Alavi AH, Gandomi AH, Sahab MG, Gandomi M (2010) Multi expression programming: a new approach to formulation of soil classification. Eng Comput 26(2):111–118. https://doi.org/10.1007/s00366-009-0140-7

    Article  Google Scholar 

  3. Araujo L (2007) How evolutionary algorithms are applied to statistical natural language processing. Artif Intell Rev 28(4):275–303

    Article  Google Scholar 

  4. Aslam MW, Zhu Z, Nandi AK (2012) Autmomatic modulation classification using combination of genetic programming and KNN. IEEE Trans Wirel Commun. https://doi.org/10.1109/TWC.2012.060412.110460

    Article  Google Scholar 

  5. Assunção F, Lourenço N, Machado P, Ribeiro B (2019) DENSER: deep evolutionary network structured representation. Genet Program Evol Mach 20(1):5–35. https://doi.org/10.1007/s10710-018-9339-y

    Article  Google Scholar 

  6. Aval SB, Ketabdari H, Asil Gharebaghi S (2017) Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming. Structures 12:13–23. https://doi.org/10.1016/j.istruc.2017.07.002

    Article  Google Scholar 

  7. Babanajad SK, Gandomi AH, Mohammadzadeh D, Alavi AH (2013) Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming. Autom Constr 36:136–144. https://doi.org/10.1016/j.autcon.2013.08.016

    Article  Google Scholar 

  8. Bayazidi A, Wang G-G, Bolandi H, Alavi AH, Gandomi AH (2014) Multigene genetic programming for estimation of elastic modulus of concrete. Math Probl Eng 2014:1–10. https://doi.org/10.1155/2014/474289

    Article  Google Scholar 

  9. Begum SAB (2013) Genetic programming for prediction of local scour at vertical bridge abutment. Int J Res Eng Technol 02(14):74–77. https://doi.org/10.15623/ijret.2013.0214015

    Article  Google Scholar 

  10. Brameier M, Banzhaf W (2007) Linear genetic programming. Springer, New York

    MATH  Google Scholar 

  11. Bui D-K, Nguyen T, Chou J-S, Nguyen-Xuan H, Ngo TD (2018) A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.conbuildmat.2018.05.201

    Article  Google Scholar 

  12. Castelli M, Vanneschi L, Silva S (2013) Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators. Expert Syst Appl 40(17):6856–6862. https://doi.org/10.1016/j.eswa.2013.06.037

    Article  Google Scholar 

  13. Cevik A, Arslan MH, Köroğlu MA (2010) Genetic-programming-based modeling of RC beam torsional strength. KSCE J Civ Eng 14(3):371–384. https://doi.org/10.1007/s12205-010-0371-6

    Article  Google Scholar 

  14. Chen Y, Chen D, Khan SU, Huang J, Xie C (2013) Solving symbolic regression problems with uniform design-aided gene expression programming. J Supercomput 66(3):1553–1575. https://doi.org/10.1007/s11227-013-0943-6

    Article  Google Scholar 

  15. Chen Q, Zhang M, Xue B (2017) New geometric semantic operators in genetic programming: perpendicular crossover and random segment mutation. In: Proceedings of the genetic and evolutionary computation conference companion on - GECCO ’17, Berlin, Germany, pp 223–224. https://doi.org/10.1145/3067695.3076008

  16. Chen Q, Zhang M, Xue B (2017) Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression. IEEE Trans Evol Comput 21(5):792–806. https://doi.org/10.1109/TEVC.2017.2683489

    Article  Google Scholar 

  17. Chen Q, Xue B, Zhang M (2019) Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators. IEEE Trans Evol Comput 23(3):488–502. https://doi.org/10.1109/TEVC.2018.2869621

    Article  Google Scholar 

  18. Danish M (2012) Prediction of scour depth at bridge abutments in cohesive bed using gene expression programming, vol 5, no 11, p 8 (2012)

  19. de Arruda PM, Davis Júnior CA, Gontijo Carrano E, de Vasconcelos JA (2014) A niching genetic programming-based multi-objective algorithm for hybrid data classification. Neurocomputing 133:342–357

    Article  Google Scholar 

  20. Evans B, Al-Sahaf H, Xue B, Zhang M (2018) Evolutionary deep learning: a genetic programming approach to image classification. In: 2018 IEEE Congress on evolutionary computation (CEC), Rio de Janeiro, pp 1–6. https://doi.org/10.1109/CEC.2018.8477933

  21. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. ArXiv Prepr. Cs0102027

  22. Gan Z, Yang Z, Li G, Jiang M (2007) Automatic modeling of complex functions with clonal selection-based gene expression programming. In: Third international conference on natural computation (ICNC 2007), Haikou, China, 2007, pp 228–232. https://doi.org/10.1109/ICNC.2007.278.

  23. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 21(1):171–187. https://doi.org/10.1007/s00521-011-0734-z

    Article  Google Scholar 

  24. Gandomi AH, Alavi AH, Sahab MG, Arjmandi P (2010) Formulation of elastic modulus of concrete using linear genetic programming. J Mech Sci Technol 24(6):1273–1278. https://doi.org/10.1007/s12206-010-0330-7

    Article  Google Scholar 

  25. Gandomi AH, Alavi AH, Shadmehri DM, Sahab MG (2013) An empirical model for shear capacity of RC deep beams using genetic-simulated annealing. Arch Civ Mech Eng 13(3):354–369. https://doi.org/10.1016/j.acme.2013.02.007

    Article  Google Scholar 

  26. Gandomi AH, Alavi AH, Kazemi S, Gandomi M (2014) Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement. Autom Constr 42:112–121. https://doi.org/10.1016/j.autcon.2014.02.007

    Article  Google Scholar 

  27. Gandomi AH, Mohammadzadeh D, Pérez-Ordóñez JL, Alavi AH (2014) Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups. Appl Soft Comput 19:112–120. https://doi.org/10.1016/j.asoc.2014.02.007

    Article  Google Scholar 

  28. Gandomi AH, Sajedi S, Kiani B, Huang Q (2016) Genetic programming for experimental big data mining: a case study on concrete creep formulation. Autom Constr 70:89–97. https://doi.org/10.1016/j.autcon.2016.06.010

    Article  Google Scholar 

  29. Gandomi AH, Alavi AH, Gandomi M, Kazemi S (2017) Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement. Measurement 95:367–376. https://doi.org/10.1016/j.measurement.2016.10.024

    Article  Google Scholar 

  30. Garg A, Garg A, Tai K (2014) A multi-gene genetic programming model for estimating stress-dependent soil water retention curves. Comput Geosci 18(1):45–56. https://doi.org/10.1007/s10596-013-9381-z

    Article  Google Scholar 

  31. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big Data of materials science: critical role of the descriptor. Phys Rev Lett 114(10):105503. https://doi.org/10.1103/PhysRevLett.114.105503

    Article  Google Scholar 

  32. Gholampour A, Gandomi AH, Ozbakkaloglu T (2017) New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr Build Mater 130:122–145. https://doi.org/10.1016/j.conbuildmat.2016.10.114

    Article  Google Scholar 

  33. Giustolisi O, Doglioni A, Savic DA, Webb BW (2007) A multi-model approach to analysis of environmental phenomena. Environ Model Softw 22(5):674–682. https://doi.org/10.1016/j.envsoft.2005.12.026

    Article  Google Scholar 

  34. Guo Z, Wu Z, Dong X, Zhang K, Wang S, Li Y (2014) Component thermodynamical selection based gene expression programming for function finding. Math Probl Eng 2014:1–16. https://doi.org/10.1155/2014/915058

    Article  Google Scholar 

  35. Guven A (2009) Linear genetic programming for time-series modelling of daily flow rate. J Earth Syst Sci 118(2):137–146. https://doi.org/10.1007/s12040-009-0022-9

    Article  Google Scholar 

  36. Hadianfard MA, Jafari S (2016) Prediction of lightweight aggregate concrete compressive strength using ultrasonic pulse velocity test through gene expression programming. Sci Iran 23(6):2506–2513. https://doi.org/10.24200/sci.2016.2309

    Article  Google Scholar 

  37. Hamedi M (2005) Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm. Artif Intell Rev 23(3):295–311

    Article  Google Scholar 

  38. İpek S, Güneyisi EM (2019) Ultimate axial strength of concrete-filled double skin steel tubular column sections. Adv Civ Eng 2019:1–19. https://doi.org/10.1155/2019/6493037

    Article  Google Scholar 

  39. Jafari S, Mahini SS (2017) Lightweight concrete design using gene expression programing. Constr Build Mater 139:93–100. https://doi.org/10.1016/j.conbuildmat.2017.01.120

    Article  Google Scholar 

  40. Jalal M, Ramezanianpour AA, Pouladkhan AR, Tedro P (2013) Application of genetic programming (GP) and ANFIS for strength enhancement modeling of CFRP-retrofitted concrete cylinders. Neural Comput Appl 23(2):455–470. https://doi.org/10.1007/s00521-012-0941-2

    Article  Google Scholar 

  41. Jiang S, Cai Z, Zeng D, Liu Y, Li Q (2005) Gene expression programming based on simulated annealing*. In: Proceedings. 2005 international conference on wireless communications, networking and mobile computing, 2005, Wuhan, China, vol 2, pp 1218–1221. https://doi.org/10.1109/WCNM.2005.1544273.

  42. Joshi SG, Londhe SN, Kwatra N (2014) Determination of natural periods of vibration using genetic programming. Earthq Struct 6(2):201–216. https://doi.org/10.12989/EAS.2014.6.2.201

    Article  Google Scholar 

  43. Koza JR (1992) Genetic programming, on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  44. Krippendorff K (2018) Content analysis: an introduction to its methodology. SAGE Publications, New York

    Google Scholar 

  45. Kushchu I (2002) An evaluation of evolutionary generalization in genetic programming. Artif Intell Rev 18(1):3–14

    Article  Google Scholar 

  46. Li N, Chen H,Han J (2019) Application of multigene genetic programming for estimating elastic modulus of reservoir rocks. In: 2019 Symposium on piezoelectrcity, acoustic waves and device applications (SPAWDA), Harbin, China, pp 1–4. https://doi.org/10.1109/SPAWDA.2019.8681879

  47. Litvinenko VI, Bidyuk PI, Bardachov JN, Sherstjuk VG, Fefelov AA (2005) Combining clonal selection algorithm and gene expression programming for time series prediction. In: 2005 IEEE intelligent data acquisition and advanced computing systems: technology and applications, Sofia, Bulgaria, 2005, pp 133–138. https://doi.org/10.1109/IDAACS.2005.282956

  48. Liu Y, Zhao T, Ju W, Shi S (2017) Materials discovery and design using machine learning. J Materiomics 3:159–177

    Article  Google Scholar 

  49. Mansouri I, Farzampour A (2018) Buckling assessment of imperfect cylindrical shells under axial loads using a gep technique. Elektron Časopis Građev Fak Osije. https://doi.org/10.13167/2018.17.9

  50. Mollahasani A, Alavi AH, Gandomi AH, Bazaz B (2011) A new prediction model for soil deformation modulus based on PLT results, p 10 (2011)

  51. Moradi M, Bagherieh AR, Esfahani MR (2019) Tensile modeling of steel fiber reinforced concrete. Asian J Civ Eng 20(2):269–280. https://doi.org/10.1007/s42107-018-00104-y

    Article  Google Scholar 

  52. Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H (2012) A new predictive model for compressive strength of HPC using gene expression programming. Adv Eng Softw 45(1):105–114. https://doi.org/10.1016/j.advengsoft.2011.09.014

    Article  Google Scholar 

  53. Nourani V, Pradhan B, Ghaffari H, Sharifi SS (2014) Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat Hazards 71(1):523–547. https://doi.org/10.1007/s11069-013-0932-3

    Article  Google Scholar 

  54. Oltean M (2004) Multi expression programming source code. Available at: https://mep.cs.ubbcluj.ro/

  55. Oltean M, Groşan C (2003) Evolving evolutionary algorithms using multi expression programming. In: European conference on artificial life, pp 651–658

  56. Oltean M, Grosan C (2004) Evolving digital circuits using multi expression programming. In: Proceedings. 2004 NASA/DoD conference on evolvable hardware, pp 87–94

  57. Ozbek A, Unsal M, Dikec A (2013) Estimating uniaxial compressive strength of rocks using genetic expression programming. J Rock Mech Geotech Eng 5(4):325–329. https://doi.org/10.1016/j.jrmge.2013.05.006

    Article  Google Scholar 

  58. Özcan F (2012) Gene expression programming based formulations for splitting tensile strength of concrete. Constr Build Mater 26(1):404–410. https://doi.org/10.1016/j.conbuildmat.2011.06.039

    MathSciNet  Article  Google Scholar 

  59. Pandey DS, Pan I, Das S, Leahy JJ, Kwapinski W (2015) Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresour Technol 179:524–533. https://doi.org/10.1016/j.biortech.2014.12.048

    Article  Google Scholar 

  60. Peker M (2016) An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms. Neurocomputing 207:165–177

    Article  Google Scholar 

  61. Price SR, Anderson DT, Price SR (2019) GOOFeD: extracting advanced features for image classification via improved genetic programming. In: 2019 IEEE congress on evolutionary computation (CEC), Wellington, New Zealand, pp 1596–1603. https:doi.org/10.1109/CEC.2019.8790347

  62. Qu L, Hongbing C, Lin HX (2015) Edit distance based crossover operator in gene expression programming. In: 2015 8th international conference on biomedical engineering and informatics (BMEI), Shenyang, China, pp 468–472. https://doi.org/10.1109/BMEI.2015.7401550

  63. Rashed A, Bazaz JB, Alavi AH (2012) Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results. Eng Appl Artif Intell 25(7):1437–1449. https://doi.org/10.1016/j.engappai.2011.11.008

    Article  Google Scholar 

  64. Rodriguez-Coayahuitl L, Morales-Reyes A, Escalante HJ (2019) A comparison among different levels of abstraction in genetic programming. In: 2019 IEEE international autumn meeting on power, electronics and computing (ROPEC), pp 1–6

  65. Rostami MF, Sadrossadat E, Ghorbani B, Kazemi SM (2018) New empirical formulations for indirect estimation of peak-confined compressive strength and strain of circular RC columns using LGP method. Eng Comput 34(4):865–880. https://doi.org/10.1007/s00366-018-0577-7

    Article  Google Scholar 

  66. Sadrossadat E, Basarir H (2019) An evolutionary-based prediction model of the 28-day compressive strength of high-performance concrete containing cementitious materials. Adv Civ Eng Mater 8(3)

  67. Sadrossadat E, Ghorbani B, Hamooni M (2017) Numerical formulation of confined compressive strength and strain of circular reinforced concrete columns using gene expression programming approach. Struct Concrete

  68. Sadrossadat E, Basarir H, Karrech A, Durham R, Fourie A, Bin H (2020) The optimization of cemented hydraulic backfill mixture design parameters for different strength conditions using artificial intelligence algorithms. In: Topal E (eds) Proceedings of the 28th international symposium on mine planning and equipment selection - MPES 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham

  69. Salehi H, Burgueño R (2018) Emerging artificial intelligence methods in structural engineering. Eng Struct 171:170–189

    Article  Google Scholar 

  70. Searson DP, Leahy DE, Willis MJ (2011) Predicting the toxicity of chemical compounds using GPTIPS: a free genetic programming toolbox for MATLAB. In: Ao S-I, Castillo O, Huang X (eds) Intelligent control and computer engineering, vol 70. Springer, Dordrecht, pp 83–93

    Chapter  Google Scholar 

  71. Suganuma M, Shirakawa S, Nagao T (2017) A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the genetic and evolutionary computation conference on - GECCO ’17, Berlin, Germany, 2017, pp 497–504. https://doi.org/10.1145/3071178.3071229

  72. Suganuma M, Kobayashi M, Shirakawa S, Nagao T (2019) Evolution of deep convolutional neural networks using Cartesian genetic programming. Evol Comput. https://doi.org/10.1162/evco_a_00253

    Article  Google Scholar 

  73. Tran B, Xue B, Zhang M (2016a) Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Comput 8(1):3–15. https://doi.org/10.1007/s12293-015-0173-y

    Article  Google Scholar 

  74. Tran K, Duong T, Ho Q (2016) Credit scoring model: a combination of genetic programming and deep learning. In: 2016 Future technologies conference (FTC), San Francisco, CA, USA, pp 145–149. https://doi.org/10.1109/FTC.2016.7821603

  75. Tsai HC, Lin Y-H (2011) Predicting high-strength concrete parameters using weighted genetic programming. Eng Comput 27(4):347–355. https://doi.org/10.1007/s00366-011-0208-z

    Article  Google Scholar 

  76. Vanneschi L, Farinaccio A, Mauri G, Antoniotti M, Provero P, Giacobini M (2011) A comparison of machine learning techniques for survival prediction in breast cancer. BioData Min 4(1):12

    Article  Google Scholar 

  77. Wang L, Yang B, Wang S, Liang Z (2015) Building image feature kinetics for cement hydration using gene expression programming with similarity weight tournament selection. IEEE Trans Evol Comput 19(5):679–693. https://doi.org/10.1109/TEVC.2014.2367111

    Article  Google Scholar 

  78. Wang Y, Yu Y, Cao S, Zhang X, Gao S (2019) ‘A review of applications of artificial intelligent algorithms in wind farms. Artif Intell Rev

  79. Xu C, Wang W, Liu P (2013) A genetic programming model for real-time crash prediction on freeways. IEEE Trans Intell Transp Syst 14(2):574–586. https://doi.org/10.1109/TITS.2012.2226240

    Article  Google Scholar 

  80. Yalpir S (2016) Enhancement of parcel valuation with adaptive artificial neural network modeling. J Artif Intell Rev 1–13

  81. Zeng T, Tang C, Xiang Y, Chen P, Liu Y (2007) A model of immune gene expression programming for rule mining, p 14

  82. Zhang Y, Rockett P (2007) A comparison of three evolutionary strategies for multi-objective genetic programming. Artif Intell Rev 27:149–163

    Article  Google Scholar 

  83. Zhong J, Ong Y-S, Cai W (2016) Self-learning gene expression programming. IEEE Trans Evol Comput 20(1):65–80. https://doi.org/10.1109/TEVC.2015.2424410

    Article  Google Scholar 

  84. Zsutty T (1971) Shear strength prediction for separate catagories of simple beam tests. J Proc 68:138–143

    Google Scholar 

Download references

Acknowledgements

Amir H. Alavi acknowledges the startup fund from the Swanson School of Engineering at the University of Pittsburgh. This study is supported in part by the Fundamental Research Funds for the Central Universities, China (2020-KYY-529112-0002). Pengcheng Jiao acknowledges the Startup Fund of the Hundred Talent Program at the Zhejiang University, China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir H. Alavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Barri, K., Jiao, P. et al. Genetic programming in civil engineering: advent, applications and future trends. Artif Intell Rev 54, 1863–1885 (2021). https://doi.org/10.1007/s10462-020-09894-7

Download citation

Keywords

  • Civil engineering
  • Prediction
  • Classification
  • Genetic programming
  • Machine learning
  • Deep learning