Skip to main content

Advertisement

Log in

Nature inspired optimization algorithms or simply variations of metaheuristics?

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In the last decade, we observe an increasing number of nature-inspired optimization algorithms, with authors often claiming their novelty and their capabilities of acting as powerful optimization techniques. However, a considerable number of these algorithms do not seem to draw inspiration from nature or to incorporate successful tactics, laws, or practices existing in natural systems, while also some of them have never been applied in any optimization field, since their first appearance in literature. This paper presents some interesting findings that have emerged after the extensive study of most of the existing nature-inspired algorithms. The need for irrationally introducing new nature inspired intelligent (NII) algorithms in literature is also questioned and possible drawbacks of NII algorithms met in literature are discussed. In addition, guidelines for the development of new nature-inspired algorithms are proposed, in an attempt to limit the misleading appearance of variation of metaheuristics as nature inspired optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbass HA (2001) MBO: marriage in honey bees optimization—a Haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol 1, pp 207–214

  • Abedinpourshotorban H, Mariyam Shamsuddin S, Beheshti Z, Jawawi DNA (2016) Electromagnetic field optimization: a physics-inspired metaheuristic optimization algorithm. Swarm Evol Comput 26:8–22. https://doi.org/10.1016/j.swevo.2015.07.002

    Article  Google Scholar 

  • Aghay-Kaboli SH, Selvaraj J, Rahim NA (2017) Rain-fall optimization algorithm: a population based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42. https://doi.org/10.1016/j.jocs.2016.12.010

    Article  Google Scholar 

  • Ahrari A, Atai AA (2010) Grenade explosion method—a novel tool for optimization of multimodal functions. Appl Soft Comput 10:1132–1140. https://doi.org/10.1016/j.asoc.2009.11.032

    Article  Google Scholar 

  • Akbari R, Mohammadi A, Ziarati K (2010) A novel bee swarm optimization algorithm for numerical function optimization. Commun Nonlinear Sci Numer Simul 15:3142–3155. https://doi.org/10.1016/j.cnsns.2009.11.003

    Article  MathSciNet  MATH  Google Scholar 

  • Alatas B (2017) Sports inspired computational intelligence algorithms for global optimization. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9587-x

    Article  Google Scholar 

  • Alauddin M (2016) Mosquito flying optimization (MFO). In: 2016 international conference on electrical, electronics, and optimization techniques (ICEEOT), pp 79–84

  • Ali J, Saeed M, Chaudhry NA et al (2015) Artificial showering algorithm: a new meta-heuristic for unconstrained optimization. Sci Int 27:4939–4942

    Google Scholar 

  • Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22:1–15. https://doi.org/10.1007/s00500-016-2442-1

    Article  Google Scholar 

  • Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Mem Comput 6:31–47. https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  • Beasley JE (1990) OR-library: distributing test problems by electronic mail. J Oper Res Soc 41:1069–1072. https://doi.org/10.1057/jors.1990.166

    Article  Google Scholar 

  • Benítez-Hidalgo A, Nebro AJ, García-Nieto J et al (2019) jMetalPy: a python framework for multi-objective optimization with metaheuristics. Swarm Evol Comput 51:100598. https://doi.org/10.1016/j.swevo.2019.100598

    Article  Google Scholar 

  • Birbil Şİ, Fang S-C (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

    MathSciNet  MATH  Google Scholar 

  • Birbil Şİ, Feyzioğlu O (2003) A global optimization method for solving fuzzy relation equations. In: Bilgiç T, De Baets B, Kaynak O (eds) Fuzzy sets and systems—IFSA 2003. Springer, Berlin, pp 718–724

    MATH  Google Scholar 

  • Bishop JM (1989) Stochastic searching networks. In: 1989 1st IEE international conference on artificial neural networks (Conf. Publ. No. 313), pp 329–331

  • Bishop JM, Torr P (1992) The stochastic search network. In: Linggard R, Myers DJ, Nightingale C (eds) Neural networks for vision, speech and natural language. Springer, Dordrecht, pp 370–387

    Google Scholar 

  • Blum C, Li X (2008) Swarm intelligence in optimization. In: Blum C, Merkle D (eds) Swarm intelligence: introduction and applications. Springer, Berlin, pp 43–85

    Google Scholar 

  • Bouarara HA, Hamou RM, Amine A (2015) New swarm intelligence technique of artificial social cockroaches for suspicious person detection using N-gram pixel with visual result mining. IJSDS 6:65–91. https://doi.org/10.4018/IJSDS.2015070105

    Article  Google Scholar 

  • Bouchekara HREH (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24:879–888. https://doi.org/10.1016/j.asoc.2014.08.056

    Article  Google Scholar 

  • Chen Z (1999) Computational intelligence for decision support. CRC Press, Berlin

    Google Scholar 

  • Cheng L, Han L, Zeng X et al (2015) Adaptive Cockroach colony optimization for rod-like robot navigation. J Bionic Eng 12:324–337. https://doi.org/10.1016/S1672-6529(14)60125-6

    Article  Google Scholar 

  • Chu S-C, Tsai P, Pan J-S (2006) Cat swarm optimization. In: Yang Q, Webb G (eds) PRICAI 2006: trends in artificial intelligence. Springer, Berlin, pp 854–858

    Google Scholar 

  • Colak ME, Varol A (2015) A novel intelligent optimization algorithm inspired from circular water waves. Elektron Elektrotech 21:3–6

    Google Scholar 

  • Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. In: Proceedings of the 1st European conference on artificial life, Cambridge, pp 134–142

  • Comellas F, Martinez-Navarro J (2009) Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour. In: Proceedings of the 1st ACM/SIGEVO summit on genetic and evolutionary computation. ACM, Berlin, pp 811–814

  • Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40:6374–6384. https://doi.org/10.1016/j.eswa.2013.05.041

    Article  Google Scholar 

  • Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Foundations of computational intelligence, vol 3. Springer, Berlin, Heidelberg, pp 23–55

    Google Scholar 

  • Deb S, Fong S, Tian Z (2015) Elephant search algorithm for optimization problems. In: 2015 10th international conference on digital information management (ICDIM), pp 249–255

  • Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Based Syst 159:20–50. https://doi.org/10.1016/j.knosys.2018.06.001

    Article  Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis, Politecnico di Milano

  • Dua D, Graff C (2017) UCI machine learning repository. University of California, School of Information and Computer Sciences, Irvine

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the 6th international symposium on micro machine and human science. IEEE, Berlin, pp 39–43

  • Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  • Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38:129–154. https://doi.org/10.1080/03052150500384759

    Article  MathSciNet  Google Scholar 

  • Faris H, Aljarah I, Mirjalili S et al (2016) EvoloPy: an open-source nature-inspired optimization framework in python. In: Proceedings of the 8th international joint conference on computational intelligence—volume 1: ECTA (IJCCI 2016). SciTePress, Berlin, pp 171–177

  • Fister I Jr, Yang X-S, Fister I et al (2013) A brief review of nature-inspired algorithms for optimization. arXiv:1307.4186 [cs]

  • Fister I Jr, Mlakar U, Brest J, Fister I (2016) A new population-based nature-inspired algorithm every month: is the current era coming to the end. In: Proceedings of the 3rd student computer science research conference. University of Primorska Press, Berlin, pp 33–37

  • Fister I, Strnad D, Yang XS (2015) Adaptation and hybridization in nature-inspired algorithms. Adaptation and hybridization in computational intelligence. Springer, Cham, pp 3–50

    Google Scholar 

  • Flores JJ, López R, Barrera J (2011) Gravitational interactions optimization. In: Coello CAC (ed) Learning and intelligent optimization. Springer, Berlin, pp 226–237

    Google Scholar 

  • Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn Res 77:425–491. https://doi.org/10.2528/PIER07082403

    Article  Google Scholar 

  • Fortin F-A, Rainville F-MD, Gardner M-A et al (2012) DEAP: evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175. https://doi.org/10.5555/2503308.2503311

    Article  MathSciNet  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    MathSciNet  MATH  Google Scholar 

  • Garcia FJM, Pérez JAM (2008) Jumping frogs optimization: a new swarm method for discrete optimization. Documentos de Trabajo del DEIOC 3

  • Gheraibia Y, Moussaoui A (2013) Penguins search optimization algorithm (PeSOA). In: Ali M, Bosse T, Hindriks KV et al (eds) Recent trends in applied artificial intelligence. Springer, Berlin, pp 222–231

    Google Scholar 

  • Haddad OB, Afshar A, Mariño MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20:661–680. https://doi.org/10.1007/s11269-005-9001-3

    Article  Google Scholar 

  • Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S (2019) Emperor penguins colony: a new metaheuristic algorithm for optimization. Evol Intel 12:211–226. https://doi.org/10.1007/s12065-019-00212-x

    Article  Google Scholar 

  • Hashim FA, Houssein EH, Mabrouk MS et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Fut Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  • Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    MathSciNet  Google Scholar 

  • Hatamlou A (2014) Heart: a novel optimization algorithm for cluster analysis. Prog Artif Intell 2:167–173. https://doi.org/10.1007/s13748-014-0046-5

    Article  Google Scholar 

  • Havens TC, Spain CJ, Salmon NG, Keller JM (2008) Roach infestation optimization. In: 2008 IEEE swarm intelligence symposium, pp 1–7

  • Hayyolalam V, Pourhaji Kazem AA (2020) Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87:103249. https://doi.org/10.1016/j.engappai.2019.103249

    Article  Google Scholar 

  • Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Fut Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  • Hernández H, Blum C (2011) Implementing a model of Japanese tree frogs’ calling behavior in sensor networks: a study of possible improvements. In: Proceedings of the 13th annual conference companion on genetic and evolutionary computation. ACM, New York, pp 615–622

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Oxford

    MATH  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Google Scholar 

  • Igel C, Toussaint M (2005) A no-free-lunch theorem for non-uniform distributions of target functions. J Math Model Algorithms 3:313–322. https://doi.org/10.1007/s10852-005-2586-y

    Article  MathSciNet  MATH  Google Scholar 

  • Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79. https://doi.org/10.1016/j.asoc.2015.03.035

    Article  Google Scholar 

  • Jiang X, Li S (2017) BAS: beetle antennae search algorithm for optimization problems. CoRR arXiv:1710.10724

  • Jiang Q, Wang L, Hei X et al (2014) Optimal approximation of stable linear systems with a novel and efficient optimization algorithm. In: 2014 IEEE congress on evolutionary computation (CEC), pp 840–844

  • Kallioras NA, Lagaros ND, Avtzis DN (2018) Pity beetle algorithm—a new metaheuristic inspired by the behavior of bark beetles. Adv Eng Softw 121:147–166. https://doi.org/10.1016/j.advengsoft.2018.04.007

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  • Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: 2009 international conference of soft computing and pattern recognition. IEEE, Berlin, pp 43–48

  • Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85. https://doi.org/10.1016/j.compstruc.2016.01.008

    Article  Google Scholar 

  • Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Google Scholar 

  • Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004

    Article  Google Scholar 

  • Kaveh A, Ilchi Ghazaan M (2017) Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. Acta Mech 228:307–322. https://doi.org/10.1007/s00707-016-1725-z

    Article  MathSciNet  Google Scholar 

  • Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  • Kaveh A, Kooshkebaghi M (2019) Artificial coronary circulation system: a new bio-inspired metaheuristic algorithm. Sci Iran. https://doi.org/10.24200/sci.2019.21366

    Article  Google Scholar 

  • Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27. https://doi.org/10.1016/j.compstruc.2014.04.005

    Article  Google Scholar 

  • Kaveh A, Mahjoubi S (2018) Lion pride optimization algorithm: a meta-heuristic method for global optimization problems. Sci Iran 25:3113–3132. https://doi.org/10.24200/sci.2018.20833

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289. https://doi.org/10.1007/s00707-009-0270-4

    Article  MATH  Google Scholar 

  • Kaveh A, Zolghadr A (2017) Cyclical parthenogenesis algorithm: a new meta-heuristic algorithm. Asian J Civ Eng (Build Hous) 18:673–701

    Google Scholar 

  • Kazem A, Sharifi E, Hussain FK et al (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13:947–958. https://doi.org/10.1016/j.asoc.2012.09.024

    Article  Google Scholar 

  • Khurma RA, Aljarah I, Sharieh A, Mirjalili S (2020) EvoloPy-FS: an open-source nature-inspired optimization framework in python for feature selection. In: Mirjalili S, Faris H, Aljarah I (eds) Evolutionary machine learning techniques: algorithms and applications. Springer, Singapore, pp 131–173

    Google Scholar 

  • Kiran K, Shenoy PD, Venugopal KR, Patnaik LM (2014) Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network. In: 2014 IEEE region 10 symposium, pp 116–120

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  MATH  Google Scholar 

  • Klein CE, dos Santos Coelho L (2018) Meerkats-inspired algorithm for global optimization problems. In: 26th European symposium on artificial neural networks, ESANN 2018, Bruges, Belgium, April 25–27, 2018, Bruges

  • Klein CE, Mariani VC, Coelho L dos S (2018) Cheetah based optimization algorithm: a novel swarm intelligence paradigm. In: 26th European symposium on artificial neural networks, ESANN 2018, Bruges, Belgium, April 25–27, 2018. UCL upcoming conferences for computer science and electronics, Bruges, pp 685–690

  • Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24:1867–1877

    Google Scholar 

  • Li K, Gao X-W, Zhou H-B, Han Y (2015) Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH–SC method. Pet Sci 12:135–147. https://doi.org/10.1007/s12182-014-0006-5

    Article  Google Scholar 

  • Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: Huang D-S, Wunsch DC, Levine DS, Jo K-H (eds) Advanced intelligent computing theories and applications. With aspects of artificial intelligence. Springer, Berlin, pp 518–525

    Google Scholar 

  • Mahmood M, Al-Khateeb B (2019) The blue monkey: a new nature inspired metaheuristic optimization algorithm |Mahmood| periodicals of engineering and natural sciences. Period Eng Nat Sci 7:1054–1066. https://doi.org/10.21533/pen.v7i3.621

    Article  Google Scholar 

  • Maia RD, de Castro LN, Caminhas WM (2012) Bee colonies as model for multimodal continuous optimization: the OptBees algorithm. In: 2012 IEEE congress on evolutionary computation, pp 1–8

  • Marinakis Y, Marinaki M (2011) Bumble bees mating optimization algorithm for the vehicle routing problem. In: Panigrahi BK, Shi Y, Lim M-H (eds) Handbook of swarm intelligence: concepts, principles and applications. Springer, Berlin, pp 347–369

    Google Scholar 

  • Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In: International conference in swarm intelligence. Springer, Berlin, pp 86–94

  • Meng X-B, Gao XZ, Lu L et al (2016) A new bio-inspired optimisation algorithm: bird swarm algorithm. J Exp Theor Artif Intell 28:673–687. https://doi.org/10.1080/0952813X.2015.1042530

    Article  Google Scholar 

  • Minhas FAA, Arif M (2011) MOX: a novel global optimization algorithm inspired from Oviposition site selection and egg hatching inhibition in mosquitoes. Appl Soft Comput 11:4614–4625. https://doi.org/10.1016/j.asoc.2011.07.020

    Article  Google Scholar 

  • Miranda L (2018) PySwarms: a research toolkit for particle swarm optimization in Python. J Open Source Softw 3:433. https://doi.org/10.21105/joss.00433

    Article  Google Scholar 

  • Mirjalili S (2015a) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  • Mirjalili S (2015b) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  • Mirjalili S (2016a) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  • Mirjalili S (2016b) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  • Mirjalili SZ, Mirjalili S, Saremi S et al (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48:805–820. https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  • Moez H, Kaveh A, Taghizadieh N (2016) Natural forest regeneration algorithm: a new meta-heuristic. Iran J Sci Technol Trans Civ Eng 40:311–326. https://doi.org/10.1007/s40996-016-0042-z

    Article  Google Scholar 

  • Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  • Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: AIP conference proceedings. AIP, pp 162–173

  • Muller SD, Marchetto J, Airaghi S, Kournoutsakos P (2002) Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput 6:16–29. https://doi.org/10.1109/4235.985689

    Article  Google Scholar 

  • Nasir ANK, Tokhi MO, Sayidmarie O, Ismail RR (2013) A novel adaptive spiral dynamic algorithm for global optimization. In: 2013 13th UK workshop on computational intelligence (UKCI). IEEE, Berlin, pp 334–341

  • Nilsson NJ, Nilsson NJ (1998) Artificial intelligence: a new synthesis. Morgan Kaufmann, London

    MATH  Google Scholar 

  • Olson RS, La Cava W, Orzechowski P et al (2017) PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min 10:36. https://doi.org/10.1186/s13040-017-0154-4

    Article  Google Scholar 

  • Pashaei E, Ozen M, Aydin N (2015) An application of black hole algorithm and decision tree for medical problem. In: 2015 IEEE 15th international conference on bioinformatics and bioengineering (BIBE), pp 1–6

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  • Pham DT, Ghanbarzadeh A, Koç E et al (2006) The bees algorithm—a novel tool for complex optimisation problems. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Intelligent production machines and systems. Elsevier, Oxford, pp 454–459

    Google Scholar 

  • Pierezan J, Dos Santos Coelho L (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–8

  • Rabanal P, Rodríguez I, Rubio F (2007) Using river formation dynamics to design heuristic algorithms. In: Akl SG, Calude CS, Dinneen MJ et al (eds) Unconventional computation. Springer, Berlin, pp 163–177

    Google Scholar 

  • Rajakumar BR (2012) The Lion’s algorithm: a new nature-inspired search algorithm. Proc Technol 6:126–135. https://doi.org/10.1016/j.protcy.2012.10.016

    Article  Google Scholar 

  • Rajakumar R, Dhavachelvan P, Vengattaraman T (2016) A survey on nature inspired meta-heuristic algorithms with its domain specifications. In: 2016 international conference on communication and electronics systems (ICCES), pp 1–6

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  • Rbouh I, Imrani AAE (2014) Hurricane-based optimization algorithm. AASRI Proc 6:26–33. https://doi.org/10.1016/j.aasri.2014.05.005

    Article  Google Scholar 

  • Ryan C, Collins J, Neill MO (1998) Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf W, Poli R, Schoenauer M, Fogarty TC (eds) Genetic programming. Springer, Berlin, pp 3–96

    Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102–103:49–63. https://doi.org/10.1016/j.compstruc.2012.03.013

    Article  Google Scholar 

  • Serani A, Diez M (2017) Dolphin pod optimization—a nature-inspired deterministic algorithm for simulation-based design. In: MOD. Springer, Volterra

  • Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bioinspir Comput 1:71–79

    Google Scholar 

  • Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140. https://doi.org/10.1504/IJCSE.2011.041221

    Article  Google Scholar 

  • Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: 2009 WRI global congress on intelligent systems. IEEE, Berlin, pp 124–128

  • Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22:3–18. https://doi.org/10.1111/itor.12001

    Article  MathSciNet  MATH  Google Scholar 

  • Steer KCB, Wirth A, Halgamuge SK (2009) The rationale behind seeking inspiration from nature. In: Chiong R (ed) Nature-inspired algorithms for optimisation. Springer, Berlin, pp 51–76

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  MATH  Google Scholar 

  • Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Tan Y, Shi Y, Tan KC (eds) Advances in swarm intelligence. Springer, Berlin, pp 355–364

    Google Scholar 

  • Tang WJ, Wu QH, Saunders JR (2007) A bacterial swarming algorithm for global optimization. In: 2007 IEEE congress on evolutionary computation, pp 1207–1212

  • Tang R, Fong S, Yang X, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 7th international conference on digital information management (ICDIM 2012), pp 165–172

  • Tawfeeq MA (2012) Intelligent algorithm for optimum solutions based on the principles of bat sonar. arXiv:1211.0730 [cs]

  • Teodorovic D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. Adv OR AI Methods Transp 51:60

    Google Scholar 

  • Tonda A (2020) Inspyred: bio-inspired algorithms in Python. Genet Program Evol Mach 21:269–272. https://doi.org/10.1007/s10710-019-09367-z

    Article  Google Scholar 

  • Tzanetos A, Dounias G (2017) Nature inspired optimization algorithms related to physical phenomena and laws of science: a survey. Int J Artif Intell Tools 26:1750022. https://doi.org/10.1142/S0218213017500221

    Article  Google Scholar 

  • Tzanetos A, Dounias G (2019) An application-based taxonomy of nature inspired intelligent algorithms. Management and Decision Engineering Laboratory (MDE-Lab) University of the Aegean, School of Engineering, Department of Financial and Management Engineering, Chios

  • Tzanetos A, Dounias G (2020) A comprehensive survey on the applications of swarm intelligence and bio-inspired evolutionary strategies. In: Tsihrintzis GA, Jain LC (eds) Machine learning paradigms: advances in deep learning-based technological applications. Springer, Cham

    Google Scholar 

  • Tzanetos A, Fister I, Dounias G (2020) A comprehensive database of nature-inspired algorithms. Data Brief 31:105792. https://doi.org/10.1016/j.dib.2020.105792

    Article  Google Scholar 

  • Valdez F, Melin P, Castillo O (2014) Modular neural networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf Sci 270:143–153. https://doi.org/10.1016/j.ins.2014.02.091

    Article  Google Scholar 

  • Vrbančič G, Brezočnik L, Mlakar U et al (2018) NiaPy: python microframework for building nature-inspired algorithms. J Open Sour Softw. https://doi.org/10.21105/joss.00613

    Article  Google Scholar 

  • Wang X, Chen Q, Zou R, Huang M (2008) An ABC supported QoS multicast routing scheme based on beehive algorithm. In: Proceedings of the 5th international ICST conference on heterogeneous networking for quality, reliability, security and robustness. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium pp 23:1–23:7

  • Wang B, Jin X, Cheng B (2012) Lion pride optimizer: an optimization algorithm inspired by lion pride behavior. Sci China Inf Sci 55:2369–2389. https://doi.org/10.1007/s11432-012-4548-0

    Article  MathSciNet  MATH  Google Scholar 

  • Wang G-G, Deb S, Coelho L dos S (2015) Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence (ISCBI). IEEE, Berlin, pp 1–5

  • Wang G-G, Gao X-Z, Zenger K, dos S. Coelho L (2018a) A novel metaheuristic algorithm inspired by rhino herd behavior. In: Proceedings of The 9th EUROSIM congress on modelling and simulation, EUROSIM 2016, the 57th SIMS conference on simulation and modelling SIMS 2016. Linköping University Electronic Press, Linköpings Universitet, Oulu, pp 1026–1033

  • Wang T, Yang L, Liu Q (2018b) Beetle swarm optimization algorithm: theory and application. arXiv:1808.00206 [cs]

  • Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo M, Birattari M, Blum C et al (eds) Ant colony optimization and swarm intelligence. Springer, Berlin, pp 83–94

    Google Scholar 

  • Weise T, Zapf M, Chiong R, Nebro AJ (2009) Why is optimization difficult? In: Chiong R (ed) Nature-inspired algorithms for optimisation. Springer, Berlin, pp 1–50

    Google Scholar 

  • Wolpert DH, Macready WG (1995) No free lunch theorems for search. Santa Fe Institute

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  • Wu S-J, Wu C-T (2015) A bio-inspired optimization for inferring interactive networks: cockroach swarm evolution. Expert Syst Appl 42:3253–3267. https://doi.org/10.1016/j.eswa.2014.11.039

    Article  Google Scholar 

  • Wu H-S, Zhang F-M (2014) Wolf pack algorithm for unconstrained global optimization. Math Probl Eng. https://doi.org/10.1155/2014/465082

    Article  MATH  Google Scholar 

  • Wu T, Yao M, Yang J (2016) Dolphin swarm algorithm. Front Inf Technol Electron Eng 17:717–729. https://doi.org/10.1631/FITEE.1500287

    Article  Google Scholar 

  • Yadav A (2019) AEFA: artificial electric field algorithm for global optimization. Swarm Evol Comput 48:93–108

    Google Scholar 

  • Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C et al (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Google Scholar 

  • Yang X-S (2014) Chapter 1—introduction to algorithms. In: Yang X-S (ed) Nature-inspired optimization algorithms. Elsevier, Oxford, pp 1–21

    MATH  Google Scholar 

  • Yang X-S (2018) Mathematical analysis of nature-inspired algorithms. In: Yang X-S (ed) Nature-inspired algorithms and applied optimization. Springer, Cham, pp 1–25

    Google Scholar 

  • Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3:24–36

    Google Scholar 

  • Yong W, Tao W, Cheng-Zhi Z, Hua-Juan H (2016) A new stochastic optimization approach—dolphin swarm optimization algorithm. Int J Comput Intel Appl 15:1650011. https://doi.org/10.1142/S1469026816500115

    Article  Google Scholar 

  • Zhang X, Chen X, He Z (2010) An ACO-based algorithm for parameter optimization of support vector machines. Expert Syst Appl 37:6618–6628. https://doi.org/10.1016/j.eswa.2010.03.067

    Article  Google Scholar 

  • Zhao R, Tang W (2008) Monkey algorithm for global numerical optimization. J Uncert Syst 2:165–176

    Google Scholar 

  • Zhaohui C, Haiyan T (2011) Cockroach swarm optimization for vehicle routing problems. Energy Proc 13:30–35. https://doi.org/10.1016/j.egypro.2011.11.007

    Article  Google Scholar 

  • Zheng Y-J (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11. https://doi.org/10.1016/j.cor.2014.10.008

    Article  MathSciNet  MATH  Google Scholar 

  • Zou Y (2019) The whirlpool algorithm based on physical phenomenon for solving optimization problems. Eng Comput 36:664–690. https://doi.org/10.1108/EC-05-2017-0174

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AT has performed the literature review needed for this work. Visualization of review results was performed also by AT. GD supervised this study. The first draft of the manuscript was written by both AT and GD, which also read and approved the final manuscript.

Corresponding author

Correspondence to Alexandros Tzanetos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzanetos, A., Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics?. Artif Intell Rev 54, 1841–1862 (2021). https://doi.org/10.1007/s10462-020-09893-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09893-8

Keywords

Navigation