Skip to main content
Log in

360 degree view of cross-domain opinion classification: a survey

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In the field of natural language processing and text mining, sentiment analysis (SA) has received huge attention from various researchers’ across the globe. By the prevalence of Web 2.0, user’s became more vigilant to share, promote and express themselves along with any issues or challenges that are being encountered on daily activities through the Internet (social media, micro-blogs, e-commerce, etc.) Expression and opinion are a complex sequence of acts that convey a huge volume of data that pose a challenge for computational researchers to decode. Over the period of time, researchers from various segments of public and private sectors are involved in the exploration of SA with an aim to understand the behavioral perspective of various stakeholders in society. Though the efforts to positively construct SA are successful, challenges still prevail for efficiency. This article presents an organized survey of SA (also known as opinion mining) along with methodologies or algorithms. The survey classifies SA into categories based on levels, tasks, and sub-task along with various techniques used for performing them. The survey explicitly focuses on different directions in which the research was explored in the area of cross-domain opinion classification. The article is concluded with an objective to present an exclusive and exhaustive analysis in the area of opinion mining containing approaches, datasets, languages, and applications used. The observations made are expected to support researches to get a greater understanding on emerging trends and state-of-the-art methods to be applied for future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17: a
Fig. 18

Similar content being viewed by others

Notes

  1. https://www.cs.cornell.edu/people/pabo/movie-review-data/.

  2. http://nlp.stanford.edu/sentiment/.

  3. http://www.cs.uic.edu/˜liub/FBS/sentiment-analysis.html.

  4. https://code.google.com/p/word2vec/.

  5. https://addons.mozilla.org/.

  6. http://mallet.cs.umass.edu/.

  7. http://www.ecmlpkdd2006.org/challenge.html.

  8. http://people.csail.mit.edu/jrennie/20newsgroups.

  9. http://ictclas.org/.

  10. www.searchforum.org.cn/tansongbo/corpus/Dangdang_Book_4000.rar.

  11. www.searchforum.org.cn/tansongbo/corpus/Ctrip_htl_4000.rar.

  12. www.searchforum.org.cn/tansongbo/corpus/Jingdong_NB_4000.rar.

  13. http://www.dangdang.com/.

  14. http://www.ctrip.com/.

  15. http://www.360buy.com/.

  16. http://people.cs.umass.edu/~mccallum/data.html.

  17. http://people.csail.mit.edu/jrennie/20Newsgroups.

  18. http://www.daviddlewis.com/resources/testcollections.

  19. http://www.cse.ust.hk/TL/dataset/Reuters.zip.

  20. http://www.csie.ntu.edu.tw/cjlin/libsvm/.

  21. http://word2vec.googlecode.com/svn/trunk/word2vec.c.

  22. http://www.douban.com/.

  23. http://www.datatang.com/data/44317.

  24. http://www.datatang.com/data/12990.

  25. http://www.chokkan.org/software/classias/.

  26. http://sentiwordnet.isti.cnr.it/.

  27. www.numpy.org.

  28. http://scikit-learn.org/.

  29. https://nlp.stanford.edu/software/tagger.shtml.

  30. http://www.tripadvisor.com/.

  31. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

  32. http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/.

  33. http://babelnet.org.

References

  • Abbasi A, Chen H, Salem A (2008) Sentiment analysis in multiple languages: feature selection for opinion classification in web forums. ACM Trans Inf Syst 26(3):1–34. https://doi.org/10.1145/1361684.1361685

    Article  Google Scholar 

  • Abbasi A, France S, Zhang Z, Chen H (2011) Selecting attributes for sentiment classification using feature relation networks. IEEE Trans Knowl Data Eng 23(3):447–462

    Article  Google Scholar 

  • Abdelwahab O, Elmaghraby AS (2018) Deep learning based vs markov chain based text generation for cross domain adaptation for sentiment classification. In: Proceedings of the IEEE international conference on information reuse and integration (IRI), pp 252–255. https://doi.org/10.1109/iri.2018.00046

  • Abdi A, Shamsuddin SM, Hasan S, Piran J (2019) Deep learning-based sentiment classification of evaluative text based on multi-feature fusion. Inf Process Manag 56(4):1245–1259. https://doi.org/10.1016/j.ipm.2019.02.018

    Article  Google Scholar 

  • Abdul-mageed M, Diab M, Kübler S (2013) SAMAR: subjectivity and sentiment analysis for Arabic social media. Comput Speech Lang 28(1):20–37. https://doi.org/10.1016/j.csl.2013.03.001

    Article  Google Scholar 

  • Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R (2011) Sentiment analysis of Twitter data. In: Proceedings of the workshop on languages in social media, pp 30–38

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th international conference on very large data bases, pp 487–499. https://doi.org/10.1007/BF02948845

  • Algur SP, Patil AP, Hiremath PS, Shivashankar S (2010) Conceptual level similarity measure based review spam detection. In: Proceedings of the IEEE international conference on signal and image processing (ICSIP), pp 416–423

  • Al-Moslmi T, Omar N, Abdullah S, Albared M (2017) Approaches to cross-domain sentiment analysis: a systematic literature review. IEEE Access 5:16173–16192. https://doi.org/10.1109/ACCESS.2017.2690342

    Article  Google Scholar 

  • Aloufi S, Saddik AE (2013) Sentiment identification in football-specific tweets. IEEE Access 6:78609–78621. https://doi.org/10.1109/ACCESS.2018.2885117

    Article  Google Scholar 

  • Apache OpenNLP. https://opennlp.apache.org/. Accessed 7 May 2019

  • Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77:236–246. https://doi.org/10.1016/j.eswa.2017.02.002

    Article  Google Scholar 

  • Baccianella S, Esuli A, Sebastiani F (2008) SENTIWORNET 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the seventh conference on international language resources and evaluation, pp 2200–2204

  • Bagheri A, Saraee M, Jong FD (2013) Care more about customers: unsupervised domain-independent aspect detection for sentiment analysis of customer reviews. Knowl-Based Syst 52:201–213. https://doi.org/10.1016/j.knosys.2013.08.011

    Article  Google Scholar 

  • Bai X (2011) Predicting consumer sentiments from online text. Decis Support Syst 50(4):732–742. https://doi.org/10.1016/j.dss.2010.08.024

    Article  Google Scholar 

  • Balahur A, Hermida JM, Montoyo A (2012a) Building and exploiting EmotiNet: a knowledge base for emotion detection based on the appraisal theory model. IEEE Trans Affect Comput 3(1):88–101

    Article  Google Scholar 

  • Balahur A, Hermida JM, Montoyo A (2012b) Detecting implicit expressions of emotion in text: a comparative analysis. Decis Support Syst 53(4):742–753. https://doi.org/10.1016/j.dss.2012.05.024

    Article  Google Scholar 

  • Balqisnadiah (2016) Web 1.0 and Web 2.0 image—Google Search, Web content. https://www.google.com/search?q=Web+1.0+and+Web+2.0+image&rlz=1C1CHBD_enIN807IN807&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj6pYeG3d7iAhVEb30KHfxyDQEQ_AUIECgB&biw=1366&bih=657#imgrc=_. Accessed 10 June 2019

  • Banea C, Mihalcea R, Wiebe J, (2008) Multilingual subjectivity analysis using machine translation. In: Proceedings of the empirical methods in natural language processing. Association for Computational Linguistics, pp 127–135

  • Banea C, Mihalcea R, Wiebe J (2013) Sense-level subjectivity in a multilingual setting. Comput Speech Lang 28(1):7–19. https://doi.org/10.1016/j.csl.2013.03.002

    Article  Google Scholar 

  • Banerjee S, Chua AYK (2014) Applauses in hotel reviews: genuine or deceptive?. In: Proceedings of the science and information conference, pp 938–942

  • Basari ASH, Hussin B, Ananta IGP, Zeniarja J (2013) Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Eng 53:453–462. https://doi.org/10.1016/j.proeng.2013.02.059

    Article  Google Scholar 

  • Bell D, Koulouri T, Lauria S, Macredie RD, Sutton J (2014) Microblogging as a mechanism for human–robot interaction. Knowl-Based Syst 69:64–77. https://doi.org/10.1016/j.knosys.2014.05.009

    Article  Google Scholar 

  • Benamara F, Cesarano C, Picariello A, Reforgiato D, Subrahmanian V (2007) Sentiment analysis: adjectives and adverbs are better than adjectives alone. In: Proceedings of the international conference on weblogs and social media (ICWSM 2007), pp 203–206

  • Bird S, Klein E, Loper E (2009) Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media lnc, Newton

    MATH  Google Scholar 

  • Bisio F, Gastaldo P, Peretti C, Zunino R, Cambria E (2013) Data intensive review mining for sentiment classification across heterogeneous domains. In: Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining, pp 1061–1067

  • Blitzer J, Mcdonald R, Pereira F (2006) Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 conference on empirical methods in natural language processing, pp 120–128

  • Blitzer J, Dredze M, Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th annual meeting of the association of computational linguistics, pp 440–447

  • Boiy E, Moens M-F (2009) A machine learning approach to sentiment analysis in multilingual Web texts. Inf Retr 12(5):526–558. https://doi.org/10.1007/s10791-008-9070-z

    Article  Google Scholar 

  • Bollegala D, Mu T (2016) Cross-domain sentiment classification using sentiment sensitive embeddings. IEEE Trans Knowl Data Eng 28(2):398–410

    Article  Google Scholar 

  • Bollegala D, Weir D, Carroll J (2013) Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans Knowl Data Eng 25(8):1719–1731

    Article  Google Scholar 

  • Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8. https://doi.org/10.1016/j.jocs.2010.12.007

    Article  Google Scholar 

  • Bosco C, Patti V, Bolioli A (2015) Developing corpora for sentiment analysis: the case of irony and senti-TUT. In: Proceedings of the international joint conference on artificial intelligence, pp 4158–4162

  • Bravo-marquez F, Mendoza M, Poblete B (2014) Meta-level sentiment models for big social data analysis. Knowl-Based Syst 69:86–99

    Article  Google Scholar 

  • Brody S, Elhadad N (2010) An unsupervised aspect-sentiment model for online reviews. In: Proceedings of the human language technologies: the 2010 annual conference of the North American chapter of the Association for Computational Linguistics, pp 804–812

  • Cambria E (2013) An introduction to concept-level sentiment analysis. In: Proceedings of the Mexican international conference on artificial intelligence. Springer, Berlin, pp 478-483. https://doi.org/10.1007/978-3-642-45111-9_41

  • Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31(2):102–107. https://doi.org/10.1109/MIS.2016.31

    Article  Google Scholar 

  • Cambria E, Speer R, Havasi C, Hussain A (2010) SenticNet: a publicly available semantic resource for opinion mining. In: Proceedings of the AAAI fall symposium: common-sense knowledge, pp 14–18

  • Cambria E, Havasi C, Hussain A (2012) SenticNet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: Proceedings of the twenty-fifth international florida artificial intelligence research society conference, pp 202–207

  • Cambria E, Schuller B, Xia Y, Havasi C (2013) New avenues in opinion mining and sentiment analysis. IEEE Intell Syst 28(2):15–21

    Article  Google Scholar 

  • Cambria E, Olsher D, Rajagopal D (2014) SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence, pp 1515–1521

  • Cambria E, Gastaldo P, Bisio F, Zunino R (2015) An ELM-based model for affective analogical reasoning. Neurocomputing 149:443–455. https://doi.org/10.1016/j.neucom.2014.01.064

    Article  Google Scholar 

  • Cambria E, Poria S, Bajpai R, Schuller B (2016) SenticNet 4: a semantic resource for sentiment analysis based on conceptual primitives. In: Proceedings of the 26th international conference on computational linguistics (COLING 2016), pp 2666–2677

  • Cambria E, Poria S, Hazarika D, Kwok K (2018) SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings. In: Proceedings of the 32nd AAAI conference on artificial intelligence, pp 1795–1802

  • Camp MVD, Bosch AVD (2012) The socialist network. Decis Support Syst 53(4):761–769. https://doi.org/10.1016/j.dss.2012.05.031

    Article  Google Scholar 

  • Carenini G, Ng R, Pauls A (2006) Multi-document summarization of evaluative text. In: Proceedings of the 11th conference of the european chapter of the Association for Computational Linguistics, pp 305–312

  • Chakraborty R, Bhavsar M, Dandapat SK, Chandra J (2019) Tweet summarization of news articles: an objective ordering-based perspective. IEEE Trans Comput Soc Syst 6(4):761–777. https://doi.org/10.1109/TCSS.2019.2926144

    Article  Google Scholar 

  • Chan SWK, Chong MWC (2017) Sentiment analysis in financial texts. Decis Support Syst 94:53–64. https://doi.org/10.1016/j.dss.2016.10.006

    Article  Google Scholar 

  • Chaturvedi I, Cambria E, Welsch RE, Herrera F (2018) Distinguishing between facts and opinions for sentiment analysis: survey and challenges. Inf Fusion 44:65–77. https://doi.org/10.1016/j.inffus.2017.12.006

    Article  Google Scholar 

  • Che W, Li Z, Liu T (2010) LTP: a Chinese language technology platform. In: Proceedings of the 23rd international conference on computational linguistics: demonstrations, pp 13–16

  • Chen CC, Tseng Y (2011) Quality evaluation of product reviews using an information quality framework. Decis Support Syst 50(4):755–768. https://doi.org/10.1016/j.dss.2010.08.023

    Article  Google Scholar 

  • Chen W, Lin S, Huang S, Chung Y, Chen K (2010) E-HowNet and automatic construction of a lexical ontology. In: Proceedings of the 23rd international conference on computational linguistics: demonstrations, pp 45–48

  • Chen L, Liu C, Chiu H (2011) A neural network based approach for sentiment classification in the blogosphere. J Inform 5(2):313–322. https://doi.org/10.1016/j.joi.2011.01.003

    Article  Google Scholar 

  • Chen L, Qi L, Wang F (2012) Comparison of feature-level learning methods for mining online consumer reviews. Expert Syst Appl 39(10):9588–9601. https://doi.org/10.1016/j.eswa.2012.02.158

    Article  Google Scholar 

  • Chen F, Ji R, Su J, Cao D, Gao Y (2018) Predicting microblog sentiments via weakly supervised multimodal deep learning. IEEE Trans Multimed 20(4):997–1007. https://doi.org/10.1109/TMM.2017.2757769

    Article  Google Scholar 

  • Cho H, Kim S, Lee J, Lee J (2014) Data-driven integration of multiple sentiment dictionaries for lexicon-based sentiment classification of product reviews. Knowl-Based Syst 71:61–71. https://doi.org/10.1016/j.knosys.2014.06.001

    Article  Google Scholar 

  • Costa H, Merschmann LHC, Barth F, Benevenuto F (2014) Pollution, bad-mouthing, and local marketing: the underground of location-based social networks. Inf Sci 279:123–137. https://doi.org/10.1016/j.ins.2014.03.108

    Article  Google Scholar 

  • Coussement K, Poel DVD (2009) Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Syst Appl 36(3):6127–6134. https://doi.org/10.1016/j.eswa.2008.07.021

    Article  Google Scholar 

  • Cruz FL, Troyano JA, Enríquez F, Ortega FJ, Vallejo CG (2010) A knowledge-rich approach to feature-based opinion extraction from product reviews. In: Proceedings of the 2nd international workshop on Search and mining user-generated contents, pp 13–20

  • Cruz FL, Troyano JA, Enríquez F, Ortega FJ, Vallejo CG (2013) ‘Long autonomy or long delay?’ The importance of domain in opinion mining. Expert Syst Appl 40:3174–3184. https://doi.org/10.1016/j.eswa.2012.12.031

    Article  Google Scholar 

  • Dang Y, Zhang Y, Chen H (2010) A lexicon-enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst 25(4):46–53

    Article  Google Scholar 

  • Dasgupta S, Ng V (2009) Mine the easy, classify the hard : a semi-supervised approach to automatic sentiment classification. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP, pp 701–709

  • Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AYA, Gelbukh A, Zhou Q (2016) Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn Comput 8(4):757–771. https://doi.org/10.1007/s12559-016-9415-7

    Article  Google Scholar 

  • Demirtas E (2013) Cross-lingual sentiment analysis with machine translation, utility of training corpora and sentiment lexica. Master dissertation, University of Technology

  • Deng Z, Luo K, Yu H (2014) A study of supervised term weighting scheme for sentiment analysis. Expert Syst Appl 41(7):3506–3513. https://doi.org/10.1016/j.eswa.2013.10.056

    Article  Google Scholar 

  • Derczynski L, Ritter A, Clark S, Bontcheva K (2013) Twitter part-of-speech tagging for all: overcoming sparse and noisy data. In: Proceedings of the international conference recent advances in natural language processing, pp 198–206

  • Deshmukh JS, Tripathy AK (2018) Entropy based classifier for cross-domain opinion mining. Appl Comput Inform 14(1):55–64. https://doi.org/10.1016/j.aci.2017.03.001

    Article  Google Scholar 

  • Desmet B, Hoste V (2013) Emotion detection in suicide notes. Expert Syst Appl 40(16):6351–6358. https://doi.org/10.1016/j.eswa.2013.05.050

    Article  Google Scholar 

  • Dey A, Jenamani M, Thakkar JJ (2018) Senti-N-Gram: an n-gram lexicon for sentiment analysis. Expert Syst Appl 103:92–105. https://doi.org/10.1016/j.eswa.2018.03.004

    Article  Google Scholar 

  • Ding X, Liu B, Zhang L (2009) Entity discovery and assignment for opinion mining applications. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1125–1134

  • Du J, Xu H, Huang X (2014) Box office prediction based on microblog. Expert Syst Appl 41(4):1680–1689. https://doi.org/10.1016/j.eswa.2013.08.065

    Article  Google Scholar 

  • Duh K, Fujino A, Nagata M (2011) Is machine translation ripe for cross-lingual sentiment classification ? In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: short papers, pp 429–433

  • Duric A, Song F (2012) Feature selection for sentiment analysis based on content and syntax models. Decis Support Syst 53(4):704–711. https://doi.org/10.1016/j.dss.2012.05.023

    Article  Google Scholar 

  • Eirinaki M, Pisal S, Singh J (2012) Sciences feature-based opinion mining and ranking. J Comput Syst Sci 78(4):1175–1184. https://doi.org/10.1016/j.jcss.2011.10.007

    Article  Google Scholar 

  • Fan T, Chang C (2011) Blogger-centric contextual advertising. Expert Syst Appl 38:2010–2012. https://doi.org/10.1016/j.eswa.2010.07.105

    Article  Google Scholar 

  • Fang Y, Tan H, Zhang J (2018) Multi-strategy sentiment analysis of consumer reviews based on semantic fuzziness. IEEE Access 6:20625–20631. https://doi.org/10.1109/ACCESS.2018.2820025

    Article  Google Scholar 

  • Farra N, Challita E, Assi RA, Hajj H (2010) Sentence-level and document-level sentiment mining for Arabic texts. In: Proceedings of the IEEE international conference on data mining workshops sentence-level (IEEE Computer Society), pp 1114–1119. https://doi.org/10.1109/ICDMW.2010.95

  • Feizollah A, Ainin S, Anuar NB, Abdullah ANB, Hazim M (2019) Halal products on Twitter: data extraction and sentiment analysis using stack of deep learning algorithms. IEEE Access 7:83354–83362. https://doi.org/10.1109/ACCESS.2019.2923275

    Article  Google Scholar 

  • Feldman R (2013) Techniques and applications for sentiment analysis. Commun ACM 56(4):82–89

    Article  Google Scholar 

  • Franco-salvador M, Cruz FL, Troyano JA, Rosso P (2015) Cross-domain polarity classification using a knowledge-enhanced meta-classifier. Knowl-Based Syst 86:46–56. https://doi.org/10.1016/j.knosys.2015.05.020

    Article  Google Scholar 

  • Fu X, Yang J, Li J, Fang M, Wang H (2018) Lexicon-enhanced LSTM with attention for general sentiment analysis. IEEE Access Spec Sect Artif Intell Cogn Comput Commun Netw 6:71884–71891. https://doi.org/10.1109/ACCESS.2018.2878425

    Article  Google Scholar 

  • Fu X, Zhang S, Chen J, Ouyang T, Wu J (2019) A sentiment-aware trading volume prediction model for P2P market using LSTM. IEEE Access 7:81934–81944. https://doi.org/10.1109/ACCESS.2019.2923637

    Article  Google Scholar 

  • Fusilier DH, Montes-y-gómez M, Rosso P, Cabrera RG (2015) Detecting positive and negative deceptive opinions using PU-learning. Inf Process Manag 51(4):433–443. https://doi.org/10.1016/j.ipm.2014.11.001

    Article  Google Scholar 

  • García-moya L, Anaya-sánchez H, Berlanga-llavori R (2013) Retrieving product features and opinions from customer reviews. IEEE Intell Syst 3:19–27

    Article  Google Scholar 

  • Gerani S, Mehdad Y, Carenini G, Ng RT, Nejat B (2014) Abstractive summarization of product reviews using discourse structure. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1602–1613

  • Geva T, Zahavi J (2014) Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news. Decis Support Syst 57:212–223. https://doi.org/10.1016/j.dss.2013.09.013

    Article  Google Scholar 

  • Ghiassi M, Skinner J, Zimbra D (2013) Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst Appl 40(16):6266–6282. https://doi.org/10.1016/j.eswa.2013.05.057

    Article  Google Scholar 

  • Ghose A, Ipeirotis PG (2011) Estimating the helpfulness and economic impact of product reviews: mining text and reviewer characteristics. IEEE Trans Knowl Data Eng 23(10):1498–1512

    Article  Google Scholar 

  • Ghulam H, Zeng F, Li W, Xiao Y (2019) Deep learning-based sentiment analysis for roman Urdu text. Procedia Comput Sci 147:131–135. https://doi.org/10.1016/j.procs.2019.01.202

    Article  Google Scholar 

  • Gimpel K et al (2011) Part-of-speech tagging for Twitter: annotation, features, and experiments. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: short papers, pp 42–47

  • Gindl S, Weichselbraun A, Scharl A (2013) Rule-based opinion target and aspect extraction to acquire affective knowledge. In: Proceedings of the 22nd international conference on World Wide Web (IW3C2), pp 557–563

  • Glorot X, Bordes A, Bengio Y (2011) Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th international conference on machine learning, pp 513–520

  • Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N project report, Stanford University 1(12), pp 1–6

  • Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 43:907–928

    Article  Google Scholar 

  • Gui L, Xu R, Lu Q, Xu J, Xu J, Liu B, Wang X (2014) Cross-lingual opinion analysis via negative transfer detection. In: Proceedings of the 52nd annual meeting of the Association for Computational Linguistics (short papers), pp 860–865

  • Hai Z, Chang K, Kim J, Yang CC (2014) Identifying features in opinion mining via intrinsic and extrinsic domain relevance. IEEE Trans Knowl Data Eng 26(3):623–634

    Article  Google Scholar 

  • Harakawa R, Ogawa T, Haseyama M (2017) Extracting hierarchical structure of web video groups based on sentiment-aware signed network analysis. IEEE Access 5:16963–16973. https://doi.org/10.1109/ACCESS.2017.2741098

    Article  Google Scholar 

  • Hassan A, Radev D (2010) Identifying text polarity using random walks. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, pp 395–403

  • He Y, Lin C, Alani H (2011) Automatically extracting polarity-bearing topics for cross-domain sentiment classification conference item. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, pp 123–131

  • He Y, Lin C, Gao W, Wong KF (2013) Dynamic joint sentiment-topic model. ACM Trans Intell Syst Technol 5(1):1–21. https://doi.org/10.1145/2542182.2542188

    Article  Google Scholar 

  • Hiroshi K, Tetsuya N, Hideo W (2004) Deeper sentiment analysis using machine translation technology. In: Proceedings of the 20th international conference on computational linguistics (COLING’04), pp 494–500

  • Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 168–177

  • Hu N, Bose I, Gao Y, Liu L (2011a) Manipulation in digital word-of-mouth: a reality check for book reviews. Decis Support Syst 50(3):627–635. https://doi.org/10.1016/j.dss.2010.08.013

    Article  Google Scholar 

  • Hu N, Liu L, Sambamurthy V (2011b) Fraud detection in online consumer reviews. Decis Support Syst 50(3):614–626. https://doi.org/10.1016/j.dss.2010.08.012

    Article  Google Scholar 

  • Hu Y, Chen Y, Chou H (2017) Opinion mining from online hotel reviews—a text summarization approach. Inf Process Manag 53:436–449

    Article  Google Scholar 

  • Huang AH, Yen DC (2013) Predicting the helpfulness of online reviews—a replication. Int J Hum-Comput Interact 29:129–138. https://doi.org/10.1080/10447318.2012.694791

    Article  Google Scholar 

  • Hung C, Lin H (2013) Using objective words in SentiWordNet to mouth sentiment classification. IEEE Intell Syst 2:47–54

    Article  Google Scholar 

  • Hussein DMEDM (2016) A survey on sentiment analysis challenges. J King Saud Univ Eng Sci 30(4):330–338. https://doi.org/10.1016/j.jksues.2016.04.002

    Article  Google Scholar 

  • Jiang L, Yu M, Zhou M, Liu X, Zhao T (2011) Target-dependent Twitter sentiment classification. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics, pp 151–160

  • Jimenez SM, Martin-valdivia MT, Molina-gonzalez MD, Urena-Lopez LA (2016) Domain adaptation of polarity lexicon combining term frequency and bootstrapping. In: Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 137–146

  • Jindal N, Liu B (2008) Opinion spam and analysis. In: Proceedings of the 3rd international conference on web search and data mining, pp 219–230

  • Jo Y, Oh A (2011) Aspect and sentiment unification model for online review analysis. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 815–824

  • Jung JJ (2012) Online named entity recognition method for micro texts in social networking services: a case study of twitter. Expert Syst Appl 39(9):8066–8070. https://doi.org/10.1016/j.eswa.2012.01.136

    Article  Google Scholar 

  • Justo R, Corcoran T, Lukin SM, Walker M, Torres MI (2014) Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web. Knowl-Based Syst 69:124–133. https://doi.org/10.1016/j.knosys.2014.05.021

    Article  Google Scholar 

  • Kanayama H, Nasukawa T (2014) Fully automatic lexicon expansion for domain-oriented sentiment analysis. In: Proceedings of the conference on empirical methods in natural language processing (EMNLP 2006) Association for Computational Linguistics, pp 355–363. https://doi.org/10.3115/1610075.1610125

  • Kang D, Park Y (2014) Review-based measurement of customer satisfaction in mobile service: sentiment analysis and VIKOR approach. Expert Syst Appl 41(4):1041–1050. https://doi.org/10.1016/j.eswa.2013.07.101

    Article  Google Scholar 

  • Kang H, Yoo SJ, Han D (2012) Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews. Expert Syst Appl 39(5):6000–6010. https://doi.org/10.1016/j.eswa.2011.11.107

    Article  Google Scholar 

  • Kennedy A, Inkpen D (2006) Sentiment classification of movie reviews using contextual valence shifters. Comput Intell 22:100–125

    Article  MathSciNet  Google Scholar 

  • Kevin Atkinson (2006) GNU Aspell, Gnu Aspell 0.60.4. http://aspell.net/. Accessed 5 May 2019

  • Khan FH, Bashir S, Qamar U (2014) TOM: twitter opinion mining framework using hybrid classification scheme. Decis Support Syst 57:245–257. https://doi.org/10.1016/j.dss.2013.09.004

    Article  Google Scholar 

  • Kim S, Hovy E (2004) Determining the sentiment of opinions. In: Proceedings of the 20th international conference on computational linguistics, pp 1367–1373

  • Kim S, Zhang J, Chen Z, Oh A, Liu S (2013) A hierarchical aspect-sentiment model for online reviews. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence, pp 526–533

  • Kong L, Schneider N, Swayamdipta S, Bhatia A, Dyer C, Smith NA (2014) A dependency parser for Tweets. In: Proceedings of the conference on empirical methods in natural language processing, pp 1001–1012

  • Kontopoulos E, Berberidis C, Dergiades T, Bassiliades N (2013) Ontology-based sentiment analysis of twitter posts. Expert Syst Appl 40(10):4065–4074. https://doi.org/10.1016/j.eswa.2013.01.001

    Article  Google Scholar 

  • Kouloumpis E, Wilson T, Moore J (2011) Twitter sentiment analysis: the good the bad and the OMG !. In: Proceedings of the fifth international AAAI conference on weblogs and social media, pp 538–541

  • Krishnamoorthy S (2015) Linguistic features for review helpfulness prediction. Expert Syst Appl 42(7):3751–3759. https://doi.org/10.1016/j.eswa.2014.12.044

    Article  Google Scholar 

  • Ku L, Chen H (2007) Mining opinions from the Web: beyond relevance retrieval. J Am Soc Inform Sci Technol 58(12):1838–1850. https://doi.org/10.1002/asi

    Article  Google Scholar 

  • Lambert P (2015) Aspect-level cross-lingual sentiment classification with constrained SMT. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing, pp 781–787

  • Lane PCR, Clarke D, Hender P (2012) On developing robust models for favourability analysis: model choice, feature sets and imbalanced data. Decis Support Syst 53(4):712–718. https://doi.org/10.1016/j.dss.2012.05.028

    Article  Google Scholar 

  • Lang K (1995) NewsWeeder: learning to filter Netnews. In: Proceedings of the twelfth international conference on machine learning. Morgan Kaufmann Publishers, pp 331–339. https://doi.org/10.1016/B978-1-55860-377-6.50048-7

  • Lau RYK, Li C, Liao SSY (2014) Social analytics: learning fuzzy product ontologies for aspect-oriented sentiment analysis. Decis Support Syst 65:80–94. https://doi.org/10.1016/j.dss.2014.05.005

    Article  Google Scholar 

  • Lazaridou A, Titov I, Sporleder C (2013) A Bayesian model for joint unsupervised induction of sentiment, aspect and discourse representations. In: Proceedings of the 51st annual meeting of the Association for Computational Linguistics, pp 1630–1639

  • Lee S, Choeh JY (2014) Predicting the helpfulness of online reviews using multilayer perceptron neural networks. Expert Syst Appl 41(6):3041–3046. https://doi.org/10.1016/j.eswa.2013.10.034

    Article  Google Scholar 

  • Lee P, Hu Y, Lu K (2018) Assessing the helpfulness of online hotel reviews: a classification-based approach. Telemat Inform 35:436–445. https://doi.org/10.1016/j.tele.2018.01.001

    Article  Google Scholar 

  • Lerman K, Blair-goldensohn S, Mcdonald R (2009) Sentiment summarization: evaluating and learning user preferences. In: Proceedings of the 12th conference of the European chapter of the Association for Computational Linguistics, pp 514–522

  • Li Y, Li T (2013) Deriving market intelligence from microblogs. Decis Support Syst 55(1):206–217. https://doi.org/10.1016/j.dss.2013.01.023

    Article  Google Scholar 

  • Li Y, Shiu Y (2012) A diffusion mechanism for social advertising over microblogs. Decis Support Syst 54(1):9–22. https://doi.org/10.1016/j.dss.2012.02.012

    Article  Google Scholar 

  • Li ST, Tsai FC (2013) A fuzzy conceptualization model for text mining with application in opinion polarity classification. Knowl-Based Syst 39:23–33. https://doi.org/10.1016/j.knosys.2012.10.005

    Article  Google Scholar 

  • Li N, Wu DD (2010) Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decis Support Syst 48(2):354–368. https://doi.org/10.1016/j.dss.2009.09.003

    Article  Google Scholar 

  • Li W, Xu H (2013) Text-based emotion classification using emotion cause extraction. Expert Syst Appl 41:1742–1749. https://doi.org/10.1016/j.eswa.2013.08.073

    Article  Google Scholar 

  • Li F, Huang M, Zhu X (2007) Sentiment analysis with global topics and local dependency. In: Proceedings of the twenty-fourth AAAI conference on artificial intelligence, pp 1371–1376

  • Li F, Huang M, Yang Y, Zhu X (2011) Learning to identify review spam. In: Proceedings of the twenty-second international joint conference on artificial intelligence, pp 2488–2493

  • Li S, Guan Z, Tang L-Y, Chen Z (2012) Exploiting consumer reviews for product feature ranking. J Comput Sci Technol 27(3):635–649. https://doi.org/10.1007/s11390-012-1250-z

    Article  Google Scholar 

  • Li S, Xue Y, Wang Z, Zhou G (2013) Active learning for cross-domain sentiment classification. In: Proceedings of the twenty-third international joint conference on artificial intelligence active, pp 2127–2133

  • Li X, Xie H, Chen L, Wang J, Deng X (2014) News impact on stock price return via sentiment analysis. Knowl-Based Syst 69:14–23. https://doi.org/10.1016/j.knosys.2014.04.022

    Article  Google Scholar 

  • Li H, Chen Z, Mukherjee A, Liu B, Shao J (2015) Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial patterns. In: Proceedings of the ninth international association for the advancement of artificial intelligence conference on web and social media analyzing, pp 634–637

  • Li S, Zhou L, Li Y (2015b) Improving aspect extraction by augmenting a frequency-based method with web-based similarity measures. Inf Process Manag 51(1):58–67. https://doi.org/10.1016/j.ipm.2014.08.005

    Article  Google Scholar 

  • Li Y, Pan Q, Yang T, Wang S, Tang J, Cambria E (2017) Learning word representations for sentiment analysis. Cogn Comput 9(6):843–851. https://doi.org/10.1007/s12559-017-9492-2

    Article  Google Scholar 

  • Liang J, Zhang K, Zhou X, Hu Y, Tan J, Bai S (2016) Leveraging latent sentiment constraint in probabilistic matrix factorization for cross-domain sentiment classification. Procedia Comput Sci 80:366–375. https://doi.org/10.1016/j.procs.2016.05.353

    Article  Google Scholar 

  • Lin C, He Y (2009) Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM conference on information and knowledge management, pp 375–384

  • Lin C, He Y, Everson R, Ruger S (2012) Weakly supervised joint sentiment-topic detection from text. IEEE Trans Knowl Data Eng 24(6):1134–1145

    Article  Google Scholar 

  • Lin C, Lee Y, Yu C, Chen H (2014) Exploring ensemble of models in taxonomy-based cross-domain sentiment classification. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management—CIKM’14, pp 1279–1288

  • Liu B (2012) Sentiment analysis and opinion mining. Morgan and Claypool publishers

  • Liu L, Nie X, Wang H (2012) Toward a fuzzy domain sentiment ontology tree for sentiment analysis. In: Proceedings of the 5th international congress on image and signal processing (CISP 2012), pp 1620–1624

  • Liu H, He J, Wang T, Song W, Du X (2013a) Electronic commerce research and applications combining user preferences and user opinions for accurate recommendation. Electron Commer Res Appl 12(1):14–23. https://doi.org/10.1016/j.elerap.2012.05.002

    Article  Google Scholar 

  • Liu Y, Jin J, Ji P, Harding JA, Fung RYK (2013b) Computer-aided design identifying helpful online reviews: a product designer’ s perspective. Comput Aided Des 45(2):180–194. https://doi.org/10.1016/j.cad.2012.07.008

    Article  Google Scholar 

  • Lo SL, Cambria E, Chiong R, Cornforth D (2017) Multilingual sentiment analysis: from formal to informal and scarce resource languages. Artif Intell Rev 48(4):499–527. https://doi.org/10.1007/s10462-016-9508-4

    Article  Google Scholar 

  • Long M, Wang J, Cao Y, Sun J, Yu PS (2016) Deep learning of transferable representation for scalable domain adaptation. IEEE Trans Knowl Data Eng 28(8):2027–2040. https://doi.org/10.1109/TKDE.2016.2554549

    Article  Google Scholar 

  • Lu Y, Kong X, Quan X, Liu W, Xu Y (2010) Exploring the sentiment strength of user reviews. In: Proceedings of the international conference on Web-age information management (WAIM 2010), pp 471–482

  • Lubis FF, Rosmansyah Y, Supangkat SH (2017) Improving course review helpfulness prediction through sentiment analysis. In: Proceedings of the international conference on ICT for smart society (ICISS), pp 1-5. https://doi.org/10.1109/ICTSS.2017.8288877

  • Ma Y, Peng H, Cambria E (2018) Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Proceedings of the 32nd AAAI conference on artificial intelligence AAAI 2018, pp 5876–5883

  • Maas AL et al (2014) Learning word vectors for sentiment analysis. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics, pp 142–150

  • Majumder N, Poria S, Peng H, Chhaya N, Cambria E, Gelbukh A (2019) Sentiment and sarcasm classification with multitask learning. IEEE Intell Syst 34(3):38–43

    Article  Google Scholar 

  • Maks I, Vossen P (2012) A lexicon model for deep sentiment analysis and opinion mining applications. Decis Support Syst 53(4):680–688. https://doi.org/10.1016/j.dss.2012.05.025

    Article  Google Scholar 

  • Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The Stanford corenlp natural language processing toolkit. In: Proceedings of the 52nd annual meeting of the Association for Computational Linguistics: system demonstrations, pp 55–60

  • Manshu T, Bing W (2019) Adding prior knowledge in hierarchical attention neural network for cross-domain sentiment classification. IEEE Access 7:32578–32588. https://doi.org/10.1109/ACCESS.2019.2901929

    Article  Google Scholar 

  • Marcacini RM, Rossi RG, Matsuno IP, Rezende SO (2018) Cross-domain aspect extraction for sentiment analysis: a transductive learning approach. Decis Support Syst 114:70–80. https://doi.org/10.1016/j.dss.2018.08.009

    Article  Google Scholar 

  • Martín-Valdivia M-T, Martínez-cámara E, Perea-Ortega JM, Ureña-lópez LA (2013) Sentiment polarity detection in Spanish reviews combining supervised and unsupervised approaches. Expert Syst Appl 40:3934–3942. https://doi.org/10.1016/j.eswa.2012.12.084

    Article  Google Scholar 

  • Mcauley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceeding of the 7th ACM conference on recommender systems, pp 165–172. http://dx.doi.org/10.1145/2507157.2507163

  • McAuley J, Pandey R, Leskovec J (2015) Inferring networks of substitutable and complementary products. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794. http://dx.doi.org/10.1145/2783258.2783381

  • Mcdonald R, Hannan K, Neylon T, Wells M, Reynar J (2007) Structured models for fine-to-coarse sentiment analysis. In: Proceedings of the 45th annual meeting of the association of computational linguistics, 432-439

  • Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J Electr Eng 5(4):1093–1113

    Article  Google Scholar 

  • Miao Q, Li Q, Dai R (2009) AMAZING: a sentiment mining and retrieval system. Expert Syst Appl 36(3):7192–7198. https://doi.org/10.1016/j.eswa.2008.09.035

    Article  Google Scholar 

  • Mihalcea R, Banea C, Wiebe J (2007) Learning multilingual subjective language via cross-lingual projections. In: Proceedings of the 45th annual meeting of the Association for Computational Linguistics, pp 976–983

  • Min H, Park JC (2012) Identifying helpful reviews based on customer’s mentions about experiences. Expert Syst Appl 39(15):11830–11838. https://doi.org/10.1016/j.eswa.2012.01.116

    Article  Google Scholar 

  • Moghaddam S, Ester M (2013) The FLDA Model for aspect-based opinion mining: addressing the cold start problem categories and subject descriptors. In: Proceedings of the international World Wide Web conferences steering committee, pp 909–918

  • Moghaddam S, Jamali M, Ester M (2012) ETF: extended tensor factorization model for personalizing prediction of review helpfulness categories and subject descriptors. In: Proceedings of the 5th ACM international conference on web search and data mining, pp 163–172

  • Mohammad SM (2012) From once upon a time to happily ever after: tracking emotions in mail and books. Decis Support Syst 53(4):730–741. https://doi.org/10.1016/j.dss.2012.05.030

    Article  MathSciNet  Google Scholar 

  • Molina-González MD, Martínez-Cámara E, Martín-Valdivia M-T, Perea-Ortega JM (2013) Semantic orientation for polarity classification in Spanish reviews. Expert Syst Appl 40(18):7250–7257. https://doi.org/10.1016/j.eswa.2013.06.076

    Article  Google Scholar 

  • Montejo-Raez A, Diıaz-Galiano MC, Urena-Lopez LA (2014) Crowd explicit sentiment analysis. Knowl-Based Syst 69:134–139. https://doi.org/10.1016/j.knosys.2014.05.007

    Article  Google Scholar 

  • Montoyo A, Martínez-barco P, Balahur A (2012) Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis Support Syst 53(4):675–679. https://doi.org/10.1016/j.dss.2012.05.022

    Article  Google Scholar 

  • Moraes R, Valiati JF, Neto WPG (2013) Document-level sentiment classification: an empirical comparison between SVM and ANN. Expert Syst Appl 40(2):621–633. https://doi.org/10.1016/j.eswa.2012.07.059

    Article  Google Scholar 

  • Moreo A, Romero M, Castro JL, Zurita JM (2012) Lexicon-based comments-oriented news sentiment analyzer system. Expert Syst Appl 39(10):9166–9180. https://doi.org/10.1016/j.eswa.2012.02.057

    Article  Google Scholar 

  • Mostafa MM (2013) More than words: social networks text mining for consumer brand sentiments. Expert Syst Appl 40(10):4241–4251. https://doi.org/10.1016/j.eswa.2013.01.019

    Article  Google Scholar 

  • Mudambi SM, Schuff D (2010) what makes a helpful online review? A study of customer reviews on amazon.com. MIS Q 34(1):185–200. https://doi.org/10.2307/20721420

    Article  Google Scholar 

  • Mukherjee S, Joshi S (2013) Sentiment aggregation using conceptnet ontology. In: Proceedings of the sixth international joint conference on natural language processing, pp 570–578

  • Mukherjee S, Joshi S (2014) Author-specific sentiment aggregation for polarity prediction of reviews. In: Proceedings of the 9th edition of the language resources and evaluation conference (LREC 2014), pp 3092–3099

  • Mukherjee A, Liu B, Glance N (2012) Spotting fake reviewer groups in consumer reviews. In: Proceedings of the 21st international conference on World Wide Web (IW3C2), pp 191–200

  • Mukherjee A, Kumar A, Liu B, Wang J, Hsu M, Castellanos M (2013) Spotting opinion spammers using behavioral footprints. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, pp 632–640

  • Mullen T, Collier N (2004) Sentiment analysis using support vector machines with diverse information sources. In: Proceedings of the 9th conference on empirical methods in natural language processing (EMNLP-04), pp 412–418

  • Nakayama Y, Fujii A (2015) Extracting condition-opinion relations toward fine-grained opinion mining. In: Proceedings of the conference on empirical methods in natural language processing, Association for Computational Linguistics, pp 622–631

  • Narayanan R, Liu B, Choudhary A (2009) Sentiment analysis of conditional sentences. In: Proceedings of the conference on empirical methods in natural language processing, pp 180–189

  • Nassirtoussi AK, Aghabozorgi S, Wah TY, Ngo DCL (2015) Text mining of news-headlines for FOREX market prediction: a multi-layer dimension reduction algorithm with semantics and sentiment. Expert Syst Appl 42:306–324

    Article  Google Scholar 

  • Nasukawa T, Yi J (2003) Sentiment analysis capturing favorability using natural language processing. In: Proceedings of the 2nd international conference on knowledge capture. ACM, pp 70–77. https://doi.org/10.1145/945645.945658

  • Navigli R, Ponzetto SP (2012) BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif Intell 193:217–250. https://doi.org/10.1016/j.artint.2012.07.001

    Article  MathSciNet  MATH  Google Scholar 

  • Neri F, Aliprandi C, Capeci F, Cuadros M, By T (2012) Sentiment analysis on social media. In: Proceedings of the 2012 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2012), pp 951–958. https://doi.org/10.1109/ASONAM.2012.164

  • Neviarouskaya A, Prendinger H, Ishizuka M (2011) SentiFul: a lexicon for sentiment analysis. IEEE Trans Affect Comput 2(1):22–36

    Article  Google Scholar 

  • Ngo-Ye TL, Sinha AP (2014) The influence of reviewer engagement characteristics on online review helpfulness: a text regression model. Decis Support Syst 61(1):47–58. https://doi.org/10.1016/j.dss.2014.01.011

    Article  Google Scholar 

  • Nguyen HT, Le Nguyen M (2018) Multilingual opinion mining on YouTube—a convolutional N-gram BiLSTM word embedding. Inf Process Manag 54:451–462. https://doi.org/10.1016/j.ipm.2018.02.001

    Article  Google Scholar 

  • Nielsen FA (2011) A new ANEW: evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903

  • Nishikawa H, Hasegawa T, Matsuo Y, Kikui G (2010) Opinion summarization with integer linear programming formulation for sentence extraction and ordering. In: Proceedings of the 23rd international conference on computational linguistics, pp 910–918

  • Nozza D, Fersini E, Messina E (2016) Deep learning and ensemble methods for domain adaptation. In: Proceedings of the IEEE 28th international conference on tools with artificial intelligence (ICTAI), pp 184–189. https://doi.org/10.1109/ICTAI.2016.0037

  • O’Connor B, Krieger M, Ahn D (2010) TweetMotif: exploratory search and topic summarization for Twitter. In: Proceedings of the fourth international AAAI conference on weblogs and social media, pp 384–385

  • O’Leary DE (2011) Blog mining-review and extensions: “from each according to his opinion”. Decis Support Syst 51(4):821–830. https://doi.org/10.1016/j.dss.2011.01.016

    Article  Google Scholar 

  • Ohana B, Delany SJ, Tierney B (2012) A Case-based approach to cross-domain sentiment classification. In: proceedings of the international conference on case-based reasoning, pp 284–296

  • Ortigosa A, Martín JM, Carro RM (2013) Computers in human behavior sentiment analysis in Facebook and its application to e-learning. Comput Hum Behav 31:527–541. https://doi.org/10.1016/j.chb.2013.05.024

    Article  Google Scholar 

  • Ott M, Choi Y, Cardie C, Hancock JT (2011) Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics, pp 309–319

  • Ott M, Cardie C, Hancock JT (2013) Negative deceptive opinion spam. In: Proceedings of the NAACL-HLT. Association for Computational Linguistics, pp 497–501

  • Pan SJ, Ni X, Sun J, Yang Q, Chen Z (2010) Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th international conference on World Wide Web—WWW’10, pp 751–760

  • Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum. In: Proceedings of the 42nd annual meeting on Association for Computational Linguistics, pp 271–278

  • Pang B, Lee L (2005) Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. arXiv preprint arXiv:cs/0506075

  • Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135

    Article  Google Scholar 

  • Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on Empirical methods in natural language processing, vol 10, pp 79–86

  • Patodkar VN, Sheikh IR (2016) Twitter as a corpus for sentiment analysis and opinion mining. Int J Adv Res Comput Commun Eng 5(12):320–322. https://doi.org/10.17148/IJARCCE.2016.51274

    Article  Google Scholar 

  • Peñalver-martinez I et al (2014) Feature-based opinion mining through ontologies. Expert Syst Appl 41(13):5995–6008. https://doi.org/10.1016/j.eswa.2014.03.022

    Article  Google Scholar 

  • Pennebaker JW, Boyd RL, Jordan K, Blackburn K (2015) The development and psychometric properties of in LIWC2015. University of Texas at Austin, Austin

    Google Scholar 

  • Pessutto LRC, Vargas DS, Moreira VP (2019) Multilingual aspect clustering for sentiment analysis. Knowl-Based Syst 192:105339. https://doi.org/10.1016/j.knosys.2019.105339

    Article  Google Scholar 

  • Ponomareva N, Thelwall M (2012) Biographies or blenders: which resource is best for cross-domain sentiment analysis? In: Proceedings of the international conference on intelligent text processing and computational linguistics, pp 488–499

  • Ponomareva N, Thelwall M (2012) Do neighbours help? An exploration of graph-based algorithms for cross-domain sentiment classification. In Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning, pp 655–665

  • Ponomareva N, Thelwall M (2013) Semi-supervised vs. cross-domain graphs for sentiment analysis. In: Proceedings of recent advances in natural language processing, pp 571–578

  • Popescu A, Etzioni O (2005) Extracting product features and opinions from reviews. In: Proceedings of human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP), pp 339–346

  • Popescu O, Strapparava C (2014) Time corpora: epochs, opinions and changes. Knowl-Based Syst 69:3–13. https://doi.org/10.1016/j.knosys.2014.04.029

    Article  Google Scholar 

  • Poria S, Gelbukh A, Hussain A, Howard N, Das D, Bandyopadhay S (2013) Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intell Syst 28(2):31–38

    Article  Google Scholar 

  • Poria S, Cambria E, Winterstein G, Huang G (2014a) Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl-Based Syst 69(1):45–63. https://doi.org/10.1016/j.knosys.2014.05.005

    Article  Google Scholar 

  • Poria S, Gelbukh A, Cambria E, Hussain A, Huang G (2014b) EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl-Based Syst 69:108–123. https://doi.org/10.1016/j.knosys.2014.06.011

    Article  Google Scholar 

  • Poria S, Cambria E, Gelbukh A (2016a) Aspect extraction for opinion mining with a deep convolutional neural network. Knowl-Based Syst 108:42–49. https://doi.org/10.1016/j.knosys.2016.06.009

    Article  Google Scholar 

  • Poria S, Cambria E, Hazarika D, Vij P (2016) A deeper look into sarcastic tweets using deep convolutional neural networks. In: Proceedings of the 26th international conference on computational linguistics (COLING 2016), pp 1601–1612

  • MF Porter (2001) Snowball: a language for stemming algorithms. http://snowball.tartarus.org/texts/introduction.html. Accessed 5 May 2019

  • Prabowo R, Thelwall M (2009) Sentiment analysis: a combined approach. J Inform 3:143–157. https://doi.org/10.1016/j.joi.2009.01.003

    Article  Google Scholar 

  • Ptáček T, Habernal I, Hong J (2014) Sarcasm detection on czech and english twitter. In: Proceedings of the COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 213–223

  • Purnawirawan N, Pelsmacker PD, Dens N (2012) Balance and sequence in online reviews: how perceived usefulness affects attitudes and intentions. J Interact Mark 26(4):244–255. https://doi.org/10.1016/j.intmar.2012.04.002

    Article  Google Scholar 

  • Qiu G, Liu B, Bu J, Chen C (2009) Expanding domain sentiment lexicon through double propagation. In: Proceedings of the 21st international joint conference on artificial intelligence, pp 1199–1204

  • Qiu G, He X, Zhang F, Shi Y, Bu J, Chen C (2010) DASA: dissatisfaction-oriented advertising based on sentiment analysis. Expert Syst Appl 37(9):6182–6191. https://doi.org/10.1016/j.eswa.2010.02.109

    Article  Google Scholar 

  • Qiu L, Rui H, Whinston A (2013a) Social network-embedded prediction markets: the effects of information acquisition and communication on predictions. Decis Support Syst 55(4):978–987. https://doi.org/10.1016/j.dss.2013.01.007

    Article  Google Scholar 

  • Qiu X, Zhang Q, Huang X (2013) FudanNLP: a Toolkit for Chinese natural language processing. In: Proceedings of the 51st annual meeting of the Association for Computational Linguistics, pp 49–54

  • Quan C, Ren F (2014) Unsupervised product feature extraction for feature-oriented opinion determination. Inf Sci 272:16–28. https://doi.org/10.1016/j.ins.2014.02.063

    Article  Google Scholar 

  • Rabelo JCB, Prudêncio RBC, Barros FA (2012) Using link structure to infer opinions in social networks. In: Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC), pp 681–685

  • Racherla P, Friske W (2012) Perceived ‘usefulness’ of online consumer reviews: an exploratory investigation across three services categories. Electron Commer Res Appl 11(6):548–559. https://doi.org/10.1016/j.elerap.2012.06.003

    Article  Google Scholar 

  • Radev DR et al (2003) Evaluation challenges in large-scale document summarization. In: Proceedings of the 41st annual meeting on Association for Computational Linguistics, pp 375–382

  • Rastogi A, Mehrotra M (2018) Impact of behavioral and textual features on opinion spam detection. In: Proceedings of the second international conference on intelligent computing and control systems (ICICCS 2018) IEEE, pp 852–857

  • Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches. Knowl-Based Syst 89:14–46. https://doi.org/10.1016/j.knosys.2015.06.015

    Article  Google Scholar 

  • Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, pp 45–50

  • Remus R (2012) Domain adaptation using domain similarity- and domain complexity-based instance selection for cross-domain sentiment analysis. In: Proceedings of the 12th international conference on data mining workshops domain, IEEE computer society, pp 717–723. https://doi.org/10.1109/ICDMW.2012.46

  • Reyes A, Rosso P (2012) Making objective decisions from subjective data: detecting irony in customer reviews. Decis Support Syst 53(4):754–760. https://doi.org/10.1016/j.dss.2012.05.027

    Article  Google Scholar 

  • Rida-e-fatima S et al (2019) A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis. IEEE Access 7:114795–114807. https://doi.org/10.1109/ACCESS.2019.2927281

    Article  Google Scholar 

  • Rill S, Reinel D, Scheidt J, Zicari RV (2014) PoliTwi: early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowl-Based Syst 69:24–33. https://doi.org/10.1016/j.knosys.2014.05.008

    Article  Google Scholar 

  • Roy SD, Mei T, Zeng W, Li S (2012) SocialTransfer: cross-domain transfer learning from social streams for media applications. In: Proceedings of the 20th ACM international conference on multimedia, pp 649–658

  • Rui H, Liu Y, Whinston A (2013) Whose and what chatter matters? The effect of tweets on movie sales. Decis Support Syst 55(4):863–870. https://doi.org/10.1016/j.dss.2012.12.022

    Article  Google Scholar 

  • Saeed RMK, Rady S, Gharib TF (2019) An ensemble approach for spam detection in Arabic opinion texts. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.10.002

    Article  Google Scholar 

  • Saleh MR, Martin-valdivia MT, Montejo-Raez A, Urena-Lopez LA (2011) Experiments with SVM to classify opinions in different domains. Expert Syst Appl 38(12):14799–14804. https://doi.org/10.1016/j.eswa.2011.05.070

    Article  Google Scholar 

  • Sanju P, Mirnalinee TT (2014) Construction of enhanced sentiment sensitive thesaurus for cross domain sentiment classification using Wiktionary. In: Proceedings of the third international conference on soft computing for problem solving, pp 195–206. https://doi.org/10.1007/978-81-322-1768-8

  • Satapathy R, Guerreiro C, Chaturvedi I, Cambria E (2017) Phonetic-based microtext normalization for Twitter sentiment analysis. In: Proceedings of the IEEE international conference on data mining workshops (ICDMW), pp 407–413. https://doi.org/10.1109/ICDMW.2017.59

  • Satapathy R, Li Y, Cavallari S, Cambria E (2019) Seq2Seq deep learning models for microtext normalization. In: Proceedings of the international joint conference on neural networks, 1–8. https://doi.org/10.1109/IJCNN.2019.8851895

  • Satapathy R, Singh A, Cambria E (2019) PhonSenticNet: a cognitive approach to microtext normalization for concept-level sentiment analysis. In: Proceedings of the international conference on computational data and social networks, pp 177–188. https://doi.org/10.1007/978-3-030-34980-6_20

  • Satapathy R, Cambria E, Nanetti A, Hussain A (2020) A review of shorthand systems: from brachygraphy to microtext and beyond. Cogn Comput

  • Seki Y, Kando N, Aono M (2009) Multilingual opinion holder identification using author and authority viewpoints. Inf Process Manag 45(2):189–199. https://doi.org/10.1016/j.ipm.2008.11.004

    Article  Google Scholar 

  • Shuang K, Guo H, Zhang Z, Loo J (2018) A sentiment information collector–extractor architecture based neural network for sentiment analysis. Inf Sci 467:549–558. https://doi.org/10.1016/j.ins.2018.08.026

    Article  Google Scholar 

  • Sindhu I, Muhammad Daudpota S, Badar K, Bakhtyar M, Baber J, Nurunnabi (2019) Aspect-based opinion mining on student’s feedback for faculty teaching performance evaluation. IEEE Access 7:108729–108741. https://doi.org/10.1109/ACCESS.2019.2928872

    Article  Google Scholar 

  • Sindhwani V, Melville P (2008) Document-word co-regularization for semi-supervised sentiment analysis. In: Proceedings of the eighth IEEE international conference on data mining, pp 1025–1030. https://doi.org/10.1109/ICDM.2008.113

  • Singh SK, Sachan MK (2019) SentiVerb system: classification of social media text using sentiment analysis. Multimed Tools Appl 78(22):32109–32136

    Article  Google Scholar 

  • Sobkowicz P, Kaschesky M, Bouchard G (2012) Opinion mining in social media: modeling, simulating, and forecasting political opinions in the web. Govern Inf Q 29(4):470–479. https://doi.org/10.1016/j.giq.2012.06.005

    Article  Google Scholar 

  • Socher R, et al (2013) Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 conference on empirical methods in natural language processing, pp 1631–1642

  • Spina D, Gonzalo J, Amigó E (2013) Discovering filter keywords for company name disambiguation in twitter. Expert Syst Appl 40(12):4986–5003. https://doi.org/10.1016/j.eswa.2013.03.001

    Article  Google Scholar 

  • Stanik C, Haering M, Maalej W (2019) Classifying multilingual user feedback using traditional machine learning and deep learning. In: Proceedings of the IEEE 27th international requirements engineering conference workshops (REW 2019). IEEE, pp 220–226. https://doi.org/10.1109/REW.2019.00046

  • Stone PJ, Dunphy DC, Smith MS (1966) The general inquirer: a computer approach to content analysis

  • Sun S, Luo C, Chen J (2017) A review of natural language processing techniques for opinion mining systems. Inf Fusion 36:10–25. https://doi.org/10.1016/j.inffus.2016.10.004

    Article  Google Scholar 

  • Taboada M, Grieve J (2004) Analyzing appraisal automatically classifying sentiment. In: Proceedings of the AAAI spring symposium on exploring attitude and affect in text Stanford, pp 158–161

  • Taboada M, Brooke J, Tofilosk M, Voll K, Stede M (2011) Lexicon-based methods for sentiment analysis. Comput Linguist 37(2):267–307

    Article  Google Scholar 

  • Tackstrom O, Mcdonald R (2008) Semi-supervised latent variable models for sentence-level sentiment analysis. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, pp 569–574

  • Taddy M (2013) Measuring political sentiment on Twitter: factor optimal design for multinomial inverse regression. Technometrics 55(4):37–41. https://doi.org/10.1080/00401706.2013.778791

    Article  MathSciNet  Google Scholar 

  • Tan S, Cheng X, Wang Y, Xu H (2009) Adapting Naive Bayes to domain adaptation for sentiment analysis. In: Proceedings of the European conference on information retrieval in advances in information retrieval, pp 337–349

  • Tan C, Lee L, Tang J, Jiang L, Zhou M, Li P (2011) User-level sentiment analysis incorporating social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD-11), pp 1397–1405

  • Tan LK, Na J, Theng Y-L, Chang K (2012) Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. J Comput Sci Technol 27(3):650–666. https://doi.org/10.1007/s11390-012-1251-y

    Article  Google Scholar 

  • Tang H, Tan S, Cheng X (2009) A survey on sentiment detection of reviews. Expert Syst Appl 36(7):10760–10773. https://doi.org/10.1016/j.eswa.2009.02.063

    Article  Google Scholar 

  • Tang D, Wei F, Qin B, Zhou M, Liu T (2014) Building large-scale Twitter-specific sentiment lexicon: a representation learning approach. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, pp 172–182

  • Tang D, Qin B, Wei F, Dong L, Liu T, Zhou M (2015) A joint segmentation and classification framework for sentence level sentiment classification. IEEE/ACM Trans Audio Speech Lang Process 23(11):1750–1761

    Article  Google Scholar 

  • Tartir S, Abdul-Nabi I (2017) Semantic sentiment analysis in Arabic social media. J King Saud Univ Comput Inf Sci 29(2):229–233. https://doi.org/10.1016/j.jksuci.2016.11.011

    Article  Google Scholar 

  • Thelwall M, Buckley K (2013) Topic-based sentiment analysis for the social web: the role of mood and issue-related words. J Am Soc Inform Sci Technol 64(8):1608–1617. https://doi.org/10.1002/asi.22872

    Article  Google Scholar 

  • Thelwall M, Buckley K, Paltoglou G, Cai D (2010) Sentiment strength detection in short informal text. J Am Soc Inform Sci Technol 61(12):2544–2558

    Article  Google Scholar 

  • Thelwall M, Buckley K, Paltoglou G (2011) Sentiment in Twitter events. J Am Soc Inform Sci Technol 62(2):406–418. https://doi.org/10.1002/asi.21462

    Article  Google Scholar 

  • Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web 1. J Am Soc Inform Sci Technol 63(1):163–173

    Article  Google Scholar 

  • Thet TT, Na J, Khoo CSG (2010) Aspect-based sentiment analysis of movie reviews on discussion boards. J Inf Sci 36(5):823–848. https://doi.org/10.1177/0165551510388123

    Article  Google Scholar 

  • Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the conference of the North American chapter of the Association for Computational Linguistics on human language technology, vol 1. Association for Computational Linguistics, pp 173–180

  • Trainor KJ, Andzulis J, Rapp A, Agnihotri R (2013) Social media technology usage and customer relationship performance: a capabilities-based examination of social CRM. J Bus Res 67(6):1201–1208. https://doi.org/10.1016/j.jbusres.2013.05.002

    Article  Google Scholar 

  • Tsai AC, Wu C, Tsai RT, Hsu JY (2013) Building a concept-level sentiment on commonsense knowledge. IEEE Intell Syst 28(2):22–30

    Article  Google Scholar 

  • Tsai Y-L, Tsai RT-H, Chueh C-H, Chang S-C (2014) Cross-domain opinion word identification with query-by-committee active learning. In: Proceedings of the international conference on technologies and applications of artificial intelligence. Springer, Cham, pp 334–343. https://doi.org/10.1007/978-3-319-13987-6_31

  • Tsakalidis A, Papadopoulos S, Kompatsiaris I (2014) An ensemble model for cross-domain polarity classification on Twitter. In: Proceedings of the international conference on web information systems engineering, pp 168–177

  • Tsytsarau M, Palpanas T (2012) Survey on mining subjective data on the web. Data Min Knowl Disc 24(3):478–514. https://doi.org/10.1007/s10618-011-0238-6

    Article  MATH  Google Scholar 

  • Turney PD (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics (ACL), pp 417–424

  • Velikovich L, Blair-goldensohn S, Hannan K, McDonald R (2010) The viability of web-derived polarity lexicons. In: Proceedings of the human language technologies: the 2010 annual conference of the North American chapter of the Association for Computational Linguistics, pp 777–785

  • Vilares D, Peng H, Satapathy R, Cambria E (2018) BabelSenticNet: a commonsense reasoning framework for multilingual sentiment analysis. In: Proceedings of the 2018 IEEE symposium series on computational intelligence (SSCI 2018), pp 1292–1298. https://doi.org/10.1109/SSCI.2018.8628718

  • Vinodhini G, Chandrasekaran RM (2014) Opinion mining using principal component analysis based ensemble model for e-commerce application. CSI Trans ICT 2(3):169–179. https://doi.org/10.1007/s40012-014-0055-3

    Article  Google Scholar 

  • Virmani D, Arora P, Kulkarni PS (2017) Cross domain analyzer to acquire review proficiency in big data. ICT Express 3(3):128–131. https://doi.org/10.1016/j.icte.2017.04.004

    Article  Google Scholar 

  • Walker MA, Anand P, Tree JEF, Abbott R, King J (2012) A corpus for research on deliberation and debate. In: Proceedings of the 8th international conference on language resources and evaluation (LREC-2012), pp 812–817

  • Wan X (2008) Using bilingual knowledge and ensemble techniques for unsupervised Chinese sentiment analysis. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 553–561

  • Wang J, Lee C (2011) Unsupervised opinion phrase extraction and rating in Chinese blog posts. In: Proceedings of the IEEE international conference on privacy, security, risk, and trust, and IEEE international conference on social computing, pp 820–823

  • Wang S, Manning CD (2012) Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th annual meeting of the Association for Computational Linguistics. Association for Computational Linguistics, pp 90–94

  • Wang H, Lu Y, Zhai C (2010) Latent aspect rating analysis on review text data: a rating regression approach. In: Proceedings of the 16th ACM SIGKDD conference on knowledge discovery and data mining (KDD’2010), pp 783–792

  • Wang G, Xie S, Liu B, Yu PS (2011) Review graph based online store review spammer detection. In: Proceedings of the 11th IEEE international conference on data mining review (IEEE Computer Society), pp 1242–1247. https://doi.org/10.1109/ICDM.2011.124

  • Wang S, Li D, Song X, Wei Y, Li H (2011b) A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification. Expert Syst Appl 38(7):8696–8702. https://doi.org/10.1016/j.eswa.2011.01.077

    Article  Google Scholar 

  • Wang G, Sun J, Ma J, Xu K, Gu J (2013a) Sentiment classification: the contribution of ensemble learning. Decis Support Syst 57:77–93. https://doi.org/10.1016/j.dss.2013.08.002

    Article  Google Scholar 

  • Wang H, Yin P, Zheng L, Liu JNK (2013b) Sentiment classification of online reviews: using sentence-based language model. J Exp Theor Artif Intell 26(1):13–31. https://doi.org/10.1080/0952813X.2013.782352

    Article  Google Scholar 

  • Wang T et al (2014) Product aspect extraction supervised with online domain knowledge. Knowl-Based Syst 71:86–100. https://doi.org/10.1016/j.knosys.2014.05.018

    Article  Google Scholar 

  • Wang L, Liu K, Cao Z, Zhao J, Melo GD (2015) Sentiment-aspect extraction based on restricted Boltzmann machines. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing, pp 616–625

  • Wang J, Peng B, Zhang X (2018a) Using a stacked residual LSTM model for sentiment intensity prediction. Neurocomputing 322:93–101. https://doi.org/10.1016/j.neucom.2018.09.049

    Article  Google Scholar 

  • Wang L, Niu J, Song H, Atiquzzaman M (2018b) SentiRelated: a cross-domain sentiment classification algorithm for short texts through sentiment related index. J Netw Comput Appl 101:111–119

    Article  Google Scholar 

  • Wei B, Pal C (2010) Cross lingual adaptation: an experiment on sentiment classifications. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, pp 258–262

  • Weichselbraun A, Gindl S, Scharl A (2014) Enriching semantic knowledge bases for opinion mining in big data applications. Knowl-Based Syst 69:78–85. https://doi.org/10.1016/j.knosys.2014.04.039

    Article  Google Scholar 

  • Whissell CM (1989) The dictionary of affect in language. In: The measurement of emotions, Academic Press, pp 113–131

  • Whitelaw C, Garg N, Argamon S (2005) Using appraisal groups for sentiment analysis. In: Proceedings of the 14th ACM international conference on information and knowledge management. ACM, pp 625–631

  • Wiebe J, Wilson T, Cardie C (2005) Annotating expressions of opinions and emotions in language. Lang Resour Eval 39:165–210. https://doi.org/10.1007/s10579-005-7880-9

    Article  Google Scholar 

  • Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the human language technology conference and conference on empirical methods in natural language processing (HLT/EMNLP), pp 347–354

  • Wu Q, Tan S (2011) A two-stage framework for cross-domain sentiment classification. Expert Syst Appl 38(11):14269–14275. https://doi.org/10.1016/j.eswa.2011.04.240

    Article  Google Scholar 

  • Wu C, Tsai RT (2014) Using relation selection to improve value propagation in a ConceptNet-based sentiment dictionary. Knowl-Based Syst 69:100–107. https://doi.org/10.1016/j.knosys.2014.04.043

    Article  Google Scholar 

  • Wu P, Li X, Shen S, He D (2019a) Social media opinion summarization using emotion cognition and convolutional neural networks. Int J Inf Manag 51:101978. https://doi.org/10.1016/j.ijinfomgt.2019.07.004

    Article  Google Scholar 

  • Wu S, Wu F, Chang Y, Wu C, Huang Y (2019b) Automatic construction of target-specific sentiment lexicon. Expert Syst Appl 116:285–298. https://doi.org/10.1016/j.eswa.2018.09.024

    Article  Google Scholar 

  • Xia R, Zong C, Li S (2011) Ensemble of feature sets and classification algorithms for sentiment classification. Inf Sci 181(6):1138–1152. https://doi.org/10.1016/j.ins.2010.11.023

    Article  Google Scholar 

  • Xia R, Zong C, Hu X, Cambria E (2013) Feature ensemble plus sample selection: domain adaptation classification. IEEE Intell Syst 28(3):10–18

    Article  Google Scholar 

  • Xie J, Chen B, Gu X, Liang F, Xu X (2019) Self-attention-based BiLSTM model for short text fine-grained sentiment classification. IEEE Access 7:180558–180570. https://doi.org/10.1109/ACCESS.2019.2957510

    Article  Google Scholar 

  • Xu K, Liao SS, Li J, Song Y (2011) Mining comparative opinions from customer reviews for competitive intelligence. Decis Support Syst 50(4):743–754. https://doi.org/10.1016/j.dss.2010.08.021

    Article  Google Scholar 

  • Xu H, Zhang F, Wang W (2015) Implicit feature identification in Chinese reviews using explicit topic mining model. Knowl-Based Syst 76:166–175. https://doi.org/10.1016/j.knosys.2014.12.012

    Article  Google Scholar 

  • Xuan HNT, Le AC, Nguyen LM (2012) Linguistic features for subjectivity classification. In: Proceedings of the international conference on asian language processing (IALP), pp 17–20. https://doi.org/10.1109/IALP.2012.47

  • Xueke X, Xueqi C, Songbo T, Yue L, Huawei S (2013) Aspect-level opinion mining of online customer reviews. China Commun 10(3):25–41

    Article  Google Scholar 

  • Yan Z, Xing M, Zhang D, Ma B (2015) EXPRS: an extended PageRank method for product feature extraction from online consumer reviews. Inf Manag 52(7):850–858. https://doi.org/10.1016/j.im.2015.02.002

    Article  Google Scholar 

  • Yang B, Cardie C (2014) Context-aware learning for sentence-level sentiment analysis with posterior regularization. In: Proceedings of the 52nd annual meeting of the Association for Computational Linguistics, pp 325–335

  • Yang P, Gao W, Tan Q, Wong K (2013) A link-bridged topic model for cross-domain document classification. Inf Process Manag 49(6):1181–1193. https://doi.org/10.1016/j.ipm.2013.05.002

    Article  Google Scholar 

  • Yessenalina A, Yue Y, Cardie C (2010) Multi-level structured models for document-level sentiment classification. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 1046–1056

  • Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13(3):55–75. https://doi.org/10.1109/MCI.2018.2840738

    Article  Google Scholar 

  • Yu H, Hatzivassiloglou V (2003) Towards answering opinion questions : separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the conference on empirical methods in natural language processing, pp 129–136

  • Yu J, Jiang J (2016) Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In: Proceedings of the conference on empirical methods in natural language processing, pp 236–246

  • Yu X, Liu Y, Huang JX (2012) Mining online reviews for predicting sales performance: a case study in the movie domain. IEEE Trans Knowl Data Eng 24(4):720–734. https://doi.org/10.1109/TKDE.2010.269

    Article  Google Scholar 

  • Yu L, Wu J, Chang P, Chu H (2013a) Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news. Knowl-Based Syst 41:89–97. https://doi.org/10.1016/j.knosys.2013.01.001

    Article  Google Scholar 

  • Yu Y, Duan W, Cao Q (2013b) The impact of social and conventional media on firm equity value: a sentiment analysis approach. Decis Support Syst 55(4):919–926. https://doi.org/10.1016/j.dss.2012.12.028

    Article  Google Scholar 

  • Zhai Z, Liu B, Xu H, Jia P (2011) Clustering product features for opinion mining. In: Proceedings of the 4th ACM international conference on web search and data mining, pp 347–354

  • Zhai Z, Xu H, Kang B, Jia P (2011b) Exploiting effective features for Chinese sentiment classification. Expert Syst Appl 38(8):9139–9146. https://doi.org/10.1016/j.eswa.2011.01.047

    Article  Google Scholar 

  • Zhai Z, Liu B, Wang J, Xu H, Jia P (2012) Product feature grouping for opinion mining. IEEE Intell Syst 27(4):37–44

    Article  Google Scholar 

  • Zhan J, Loh HT, Liu Y (2009) Gather customer concerns from online product reviews—a text summarization approach. Expert Syst Appl 36(2):2107–2115. https://doi.org/10.1016/j.eswa.2007.12.039

    Article  Google Scholar 

  • Zhang Z (2008) Weighing stars: aggregating online product. IEEE Intell Syst 23(5):42–49

    Article  Google Scholar 

  • Zhang Z, Ye Q, Zhang Z, Li Y (2011) Sentiment classification of Internet restaurant reviews written in Cantonese. Expert Syst Appl 38(6):7674–7682. https://doi.org/10.1016/j.eswa.2010.12.147

    Article  Google Scholar 

  • Zhang K, Xie Y, Yang Y, Sun A, Liu H, Choudhary A (2014) Incorporating conditional random fields and active learning to improve sentiment identification. Neural Netw 58:60–67. https://doi.org/10.1016/j.neunet.2014.04.005

    Article  Google Scholar 

  • Zhang Y, Hu X, Li P, Li L, Wu X (2015) Cross-domain sentiment classification-feature divergence, polarity divergence or both? Pattern Recogn Lett 65:44–50. https://doi.org/10.1016/j.patrec.2015.07.006

    Article  Google Scholar 

  • Zhang RUI, Wang Z, Yin KAI, Huang Z (2019) Emotional text generation based on cross-domain sentiment transfer. IEEE Access 7:100081–100089

    Article  Google Scholar 

  • Zhao R, Mao K (2014) Supervised adaptive-transfer PLSA for cross-domain text classification. In: Procceedings of the IEEE international conference on data mining workshop, pp 259–266. https://doi.org/10.1109/ICDMW.2014.163

  • Zhao W, Guan Z, Chen L, He X, Cai D, Wang B, Wang Q (2018) Weakly-supervised deep embedding for product review sentiment analysis. IEEE Trans Knowl Data Eng 30(1):185–197. https://doi.org/10.1109/TKDE.2017.2756658

    Article  Google Scholar 

  • Zhao W, Peng H, Eger S, Cambria E, Yang M (2019) Towards scalable and reliable capsule networks for challenging NLP applications. In: Proceedings of the 57th annual meeting of the association for computational linguistics, pp 1549–1559. https://doi.org/10.18653/v1/P19-1150

  • Zheng X, Lin Z, Wang X, Lin K, Song M (2014) Incorporating appraisal expression patterns into topic modeling for aspect and sentiment word identification. Knowl-Based Syst 61:29–47

    Article  Google Scholar 

  • Zhou L, Chaovalit P (2008) Ontology-supported polarity mining. J Am Soc Inform Sci Technol 59(1):98–110. https://doi.org/10.1002/asi.20735

    Article  Google Scholar 

  • Zhou H, Song F (2012) Aspect-level sentiment analysis based on a generalized probabilistic topic and syntax model. In: Proceedings of the twenty-eighth international Florida artificial intelligence research society conference, pp 241–244

  • Zhou G, Zhou Y, Guo X, Tu X, He T (2015) Cross-domain sentiment classification via topical correspondence transfer. Neurocomputing 159:298–305. https://doi.org/10.1016/j.neucom.2014.12.006

    Article  Google Scholar 

  • Zhu Z, Dai D, Ding Y, Qian J, Li S (2013) Employing emotion keywords to improve cross-domain sentiment classification. In: Proceedings of the workshop on Chinese lexical semantics, pp 64–71

  • Zhu X, Ghahramani Z (2002) Learning from labeled and unlabeled data with label propagation

  • Zhu J, Wang Q (2015) NiuParser: a Chinese syntactic and semantic parsing toolkit. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing: system demonstrations, pp 145–150

  • Zhu J, Wang H, Zhu M, Tsou BK, Ma M (2011) Aspect-based opinion polling from customer reviews. IEEE Trans Affect Comput 2(1):37–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Sachan, M.K. & Patel, R.B. 360 degree view of cross-domain opinion classification: a survey. Artif Intell Rev 54, 1385–1506 (2021). https://doi.org/10.1007/s10462-020-09884-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09884-9

Keywords

Navigation