Interval valued m-polar fuzzy planar graph and its application

Abstract

In this article, a new idea of interval-valued m-polar fuzzy (IVmPF) graph is introduced and investigated some of it’s properties. Here, IVmPF multiset, interval-valued m-polar fuzzy (IVmPF) multi graph are presented. IVmPF planar value of an interval-valued m-polar fuzzy (IVmPF) planar graph along with degree of planarity value is also introduced to measure the planarity value of an interval-valued m-polar fuzzy (IVmPF) graph. Some related terms like complete IVmPF graph, strong IVmPF graph, strong edges, faces of IVmPF planar graph are presented. In this paper, IVmPF dual graph is also described which is closely related to IVmPF planar graph. Some important properties are studied on IVmPF dual graph. Lastly, a real life application on IVmPF planar graph has been discussed to show its practicability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Akram M (2012) Interval-valued fuzzy line graphs. Neural Comput Appl 21:145–150

    Google Scholar 

  2. Akram M (2019) \(m\)-polar fuzzy graphs, theory, methods, application. Springer, Berlin. https://doi.org/10.1007/978-3-030-03751-2

    Google Scholar 

  3. Akram M, Adeel A (2017) \(m\)-polar fuzzy graphs and \(m\)-polar fuzzy line graphs. J Discrete Math Sci Cryptogr 20(8):1597–1617

    MathSciNet  MATH  Google Scholar 

  4. Akram M, Dudek WA (2011) Interval-valued fuzzy graphs. Comput Math Appl 61:289–299

    MathSciNet  MATH  Google Scholar 

  5. Akram M, Farooq A (2016) \(m\)-polar fuzzy lie ideals of lie algebras. Quasigroups Relat Syst 24:141–150

    MathSciNet  MATH  Google Scholar 

  6. Akram M, Yousaf MM, Dudek AW (2015) Self centered interval-valued fuzzy graphs. Afrika Matematika 26(5):887–898

    MathSciNet  MATH  Google Scholar 

  7. Akram M, Farooq A, Shum KP (2016a) On \(m\)-polar fuzzy lie subalgebras. Italian J Pure Appl Math 36:445–454

    MathSciNet  MATH  Google Scholar 

  8. Akram M, Wassem N, Dudek WA (2016b) Certain types of edge \(m\)-polar fuzzy graph. Iranian J Fuzzy Syst 14(4):27–50

    MathSciNet  Google Scholar 

  9. Al-Masarwah A, Abu Qamar M (2016) Some new concepts of fuzzy soft graphs. Fuzzy Inf Eng 8(4):427–438

    MathSciNet  Google Scholar 

  10. Al-Masarwah A, Abu Qamar M (2018) Certain types of fuzzy soft graphs. New Math Natural Comput 14(2):145–156

    MathSciNet  Google Scholar 

  11. Al-Masarwah A, Ahmad AG (2019a) \(m\)-Polar fuzzy ideals of BCK/BCI-algebras. J King Saud Univ Sci 31(4):1220–1226. https://doi.org/10.1016/j.jksus.2018.10.002

    Article  MATH  Google Scholar 

  12. Al-Masarwah A, Ahmad AG (2019b) \(m\)-Polar \((\alpha, \beta )\)-fuzzy ideals in BCK/BCI-algebras. Symmetry 11(1):44. https://doi.org/10.3390/sym11010044

    Article  MATH  Google Scholar 

  13. Al-Masarwah A, Ahmad AG (2019c) On (complete) normality of \(m\)-PF subalgebras in BCK/BCI-algebras. AIMS Math 4(3):740–750

    Google Scholar 

  14. Al-Masarwah A, Ahmad AG (2019d) A new form of generalized \(m\)-PF ideals in BCK/BCI-algebras. Ann Commun Math 2(1):11–16

    Google Scholar 

  15. Ananthanarayanan M, Lavanya S (2014) Fuzzy graph coloring using \(\alpha \)-cut. Int J Eng Appl Sci 4(10):23–28

    Google Scholar 

  16. Anjali N, Mathew S (2015) On blocks and stars in fuzzy graphs. J Intell Fuzzy Syst 28:1659–1665

    MathSciNet  MATH  Google Scholar 

  17. Bhutani RK, Battou A (2003) On \(M\)-strong fuzzy graphs. Inf Sci 155:103–109

    MathSciNet  MATH  Google Scholar 

  18. Bhutani RK, Rosenfeld A (2003) Strong arcs in fuzzy graph. Inf Sci 152:319–322

    MathSciNet  MATH  Google Scholar 

  19. Chen J, Li S, Ma S, Wang X (2014) \(m\)-polar fuzzy sets: an extension of bipolar fuzzy sets. Hindwai Publishing Corporation, The Scientific World Journal : 1–8

  20. Elmoasry A, Yaqoob N (2019) \(m\)-polar fuzzy hyperideals in LA-semihypergroups. Int J Anal Appl 17(10):329–341

    MATH  Google Scholar 

  21. Eslahchi C, Onagh BN (2006) Vertex strength of fuzzy graphs. Hindawi Publishing Corporation, pp 1–9

  22. Farooq A, Alia G, Akram M (2016) On \(m\)-polar fuzzy groups. Int J Algebra Stat 5:115–127

    Google Scholar 

  23. Gani NA, Malarvizhi J (2008) Isomorphism on fuzzy graphs. Int J Comput Math Sci 2(11):825–831

    MathSciNet  Google Scholar 

  24. Ghorai G, Pal M (2015) On some operations and density of \(m\)-polar fuzzy graphs. Pac Sci Rev A Natl Sci Eng 17(1):14–22

    Google Scholar 

  25. Ghorai G, Pal M (2016a) Some properties of \(m\)-polar fuzzy graphs. Pac Sci Rev A Natl Sci Eng 18(1):38–46

    MATH  Google Scholar 

  26. Ghorai G, Pal M (2016b) A study on \(m\)-polar fuzzy planar graphs. Int J Comput Sci Math 7(3):283–292

    MathSciNet  MATH  Google Scholar 

  27. Ghorai G, Pal M (2016c) Faces and dual of \(m\)-polar fuzzy planar graphs. J Intell Fuzzy Syst 31(3):2043–2049

    MATH  Google Scholar 

  28. Ghorai G, Pal M (2016d) Some isomorphic properties of \(m\)-polar fuzzy graphs with applications. SpringerPlus 5(1):2104–2125

    Google Scholar 

  29. Ghorai G, Pal M (2017) Planarity in vague graphs with application. Acta Mathematica Academiae Paedagogiace Nyregyhziensis 33(2):147–164

    MathSciNet  MATH  Google Scholar 

  30. Kauffman A (1973) Introduction a la theorie des Sous-emsembles flous, Mansson et Cie

  31. Mandal S, Sahoo S, Ghorai G, Pal M (2017) Genus value of \(m\)-polar fuzzy graphs. J Intell Fuzzy Syst 34(3):1947–1957

    Google Scholar 

  32. Mathew S, Sunitha MS (2012) Fuzzy graphs: basics, concepts and applications. Lap Lambert Academic Publishing

  33. Mordeson NJ, Nair SP (1994) Operation on fuzzy graphs. Inf Sci 79(3–4):159–170

    MathSciNet  Google Scholar 

  34. Mordeson JN, Nair SP (2000) Fuzzy graph and fuzzy hypergraphs. Physica-Verlag, Heidelberg

    Google Scholar 

  35. Rosenfeld A (1975) Fuzzy graphs. Fuzzy sets and their application. Academic Press, New York, pp 77–95

    Google Scholar 

  36. Sahoo S, Pal M (2016a) Intuitionistic fuzzy tolerance graph with application. J Appl Math Comput 55:495–511

    MathSciNet  MATH  Google Scholar 

  37. Sahoo S, Pal M (2016b) Intuitionistic fuzzy graphs and degree. J Intell Fuzzy Syst 32(1):1059–1067

    MATH  Google Scholar 

  38. Samanta S, Pal M (2015) Fuzzy planar graph. IEEE Trans Fuzzy Syst 23:1936–1942

    Google Scholar 

  39. Samanta S, Pramanik T, Pal M (2016) Fuzzy colouring of fuzzy graphs. Afrika Mathematika 27:37–50

    MathSciNet  MATH  Google Scholar 

  40. Singh PK, Kumar CA, Li J (2012) Interval-valued fuzzy graph representation of concept lattice. In: Proceedings of 12th international conference on intelligent systems design and application, pp 604–609

  41. Singh PK (2018a) \(m\)-polar fuzzy graph representation of concept lattice. Eng Appl Artif Intell 67:52–62. https://doi.org/10.1016/j.engappai.2017.09.011

    Article  Google Scholar 

  42. Singh PK (2018b) Concept lattice visualization of data with \(m\)-polar fuzzy attribute. Granul Comput 3(2):123–137

    Google Scholar 

  43. Singh PK (2018c) Interval-Valued neutrosophic graph representation of concept lattice and its (\(\alpha,\beta,\gamma \))-decomposition. Arab J Sci Eng 43(2):723–740

    Google Scholar 

  44. Singh PK (2019) Object and attribute oriented \(m\)-polar fuzzy concept lattice using the projection operator. Granul Comput 4(3):545–558

    Google Scholar 

  45. Singh PK, Kumar CA, Li J (2016) Knowledge representation using interval-valued fuzzy formal concept lattice. Soft Comput 20(4):1485–1502

    MATH  Google Scholar 

  46. Sunitha MS, Mathew S (2013) Fuzzy graph theory: a survey. Ann Pure Appl Math 4:92–110

    Google Scholar 

  47. Talebi AA, Rashmanlou H (2013) Isomorphism on interval-valued fuzzy graphs. Ann Fuzzy Math Inf 6(1):47–58

    MathSciNet  MATH  Google Scholar 

  48. Yang LH, Li GS, Yang HW, Lu Y (2013) Notes on bipolar fuzzy graphs. Inf Sci 242:113–121

    MathSciNet  MATH  Google Scholar 

  49. Zadeh LA (1965a) Fuzzy sets. Inf Control 8:338–353

    MATH  Google Scholar 

  50. Zadeh LA (1965b) The concept of a linguistic and application to approximate reasoning. Inf Sci 8:199–249

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the learned reviewers for their valuable comments and suggestions to improve the quality of the article. Financial support of first author offered by University Grants commission, New Delhi, India (UGC Ref.No:1215/CSIR-UGC NET DEC.2016) is thankfully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ganesh Ghorai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T., Sahoo, S., Ghorai, G. et al. Interval valued m-polar fuzzy planar graph and its application. Artif Intell Rev (2020). https://doi.org/10.1007/s10462-020-09879-6

Download citation

Keywords

  • IVmPF graph
  • Strong edges of IVmPF graph
  • IVmPF planar graph
  • IVmPF faces
  • IVmPF dual graph