A systematic literature review of multicriteria recommender systems


Since the first years of the 90s, recommender systems have emerged as effective tools for automatically selecting items according to user preferences. Traditional recommenders rely on the relevance assessments that users express using a single rating for each item. However, some authors started to suggest that this approach could be limited, as we naturally tend to formulate different judgments according to multiple criteria. During the last decade, several studies introduced novel recommender systems capable of exploiting user preferences expressed over multiple criteria. This work proposes a systematic literature review in the field of multicriteria recommender systems. Following a replicable protocol, we selected a total number of 93 studies dealing with this topic. We subsequently analyzed them to provide an answer to five different research questions. We considered what are the most common research problems, recommendation approaches, data mining and machine learning algorithms mentioned in these studies. Furthermore, we investigated the domains of application, the exploited evaluation protocols, metrics and datasets, and the most promising suggestions for future works.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.


  2. 2.

    Please note that the results for the year 2019 are not available, as the selection was performed in January 2019.

  3. 3.


  4. 4.


  5. 5.


  6. 6.


  7. 7.



  1. Adomavicius G, Kwon Y (2015) Multi-criteria recommender systems. In: Recommender systems handbook. Springer, pp 847–880. https://doi.org/10.1007/978-1-4899-7637-6_25

  2. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749. https://doi.org/10.1109/tkde.2005.99

    Article  Google Scholar 

  3. Adomavicius G, Tuzhilin A (2015) Context-aware recommender systems. In: Recommender systems handbook. Springer, pp 191–226 https://doi.org/10.1007/978-1-4899-7637-6_6

  4. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72. https://doi.org/10.1145/245108.245124

    Article  Google Scholar 

  5. Burke R (2007) Hybrid web recommender systems. In: The adaptive web. Springer, Berlin, pp 377–408. https://doi.org/10.1007/978-3-540-72079-9_12

  6. Çano E, Morisio M (2017) Hybrid recommender systems: a systematic literature review. Intell Data Anal 21(6):1487–1524. https://doi.org/10.3233/IDA-163209

    Article  Google Scholar 

  7. Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In: 2011 international symposium on empirical software engineering and measurement. IEEE. https://doi.org/10.1109/esem.2011.36

  8. de Gemmis M, Lops P, Musto C, Narducci F, Semeraro G (2015) Semantics-aware content-based recommender systems. In: Recommender systems handbook. Springer, pp 119–159. https://doi.org/10.1007/978-1-4899-7637-6_4

  9. Figueroa C, Vagliano I, Rocha OR, Morisio M (2015) A systematic literature review of linked data-based recommender systems. Concurr Comput Pract Exp 27(17):4659–4684. https://doi.org/10.1002/cpe.3449

    Article  Google Scholar 

  10. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information tapestry. Commun ACM 35(12):61–70. https://doi.org/10.1145/138859.138867

    Article  Google Scholar 

  11. Gunawardana A, Shani G (2015) Evaluating recommender systems. In: Recommender systems handbook, 2 edn, chap. 8. Springer, pp 265–308. https://doi.org/10.1007/978-1-4899-7637-6_8

  12. Guy I (2015) Social recommender systems. In: Recommender systems handbook. Springer, pp 511–543. https://doi.org/10.1007/978-1-4899-7637-6_15

  13. Herlocker JL, Konstan JA, Riedl J (2000). Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM conference on computer supported cooperative work. ACM https://doi.org/10.1145/358916.358995

  14. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53. https://doi.org/10.1145/963770.963772

    Article  Google Scholar 

  15. Hong J, Suh E, Kim SJ (2009) Context-aware systems: a literature review and classification. Expert Syst Appl 36(4):8509–8522. https://doi.org/10.1016/j.eswa.2008.10.071

    Article  Google Scholar 

  16. Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

  17. Manouselis N, Costopoulou C (2007) Analysis and classification of multi-criteria recommender systems. World Wide Web 10(4):415–441. https://doi.org/10.1007/s11280-007-0019-8

    Article  Google Scholar 

  18. Park DH, Kim HK, Choi IY, Kim JK (2012) A literature review and classification of recommender systems research. Expert Syst Appl 39(11):10059–10072. https://doi.org/10.1016/j.eswa.2012.02.038

    Article  Google Scholar 

  19. Portugal I, Alencar P, Cowan D (2018) The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97:205–227. https://doi.org/10.1016/j.eswa.2017.12.020

    Article  Google Scholar 

  20. Quadrana M, Cremonesi P, Jannach D (2018) Sequence-aware recommender systems. ACM Comput Surv 51(4):1–36. https://doi.org/10.1145/3190616

    Article  Google Scholar 

  21. Ricci F, Rokach L, Shapira B (2015). Recommender systems: Introduction and challenges. In: Recommender systems handbook. Springer, pp 1–34. https://doi.org/10.1007/978-1-4899-7637-6_1

  22. Said A, Bellogín A (2014) Comparative recommender system evaluation. In: Proceedings of the 8th ACM conference on recommender systems. ACM, pp 129–136. https://doi.org/10.1145/2645710.2645746

  23. Wang H, Lu Y, Zhai C (2010) Latent aspect rating analysis on review text data. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM. https://doi.org/10.1145/1835804.1835903

  24. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system. ACM Comput Surv 52(1):1–38. https://doi.org/10.1145/3285029

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Diego Monti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Selected studies

Appendix: Selected studies

Code Author Title Year Publication Source
P1 Liu, L.; Mehandjiev, N.; Xu, D.-L. Multi-criteria service recommendation based on user criteria preferences 2011 Fifth ACM Conference on Recommender Systems ACM Digital Library
P2 Shambour, Q.; Lu, J. A hybrid multi-criteria semantic-enhanced collaborative filtering approach for personalized recommendations 2011 International Conferences on Web Intelligence and Intelligent Agent Technology ACM Digital Library
P3 Jannach, D.; Karakaya, Z.; Gedikli, F. Accuracy improvements for multi-criteria recommender systems 2012 13th ACM Conference on Electronic Commerce ACM Digital Library
P4 Hdioud, F.; Frikh, B.; Ouhbi, B. Multi-criteria recommender systems based on multi-attribute decision making 2013 International Conference on Information Integration and Web-based Applications & Services ACM Digital Library
P5 Choudhary, P.; Kant, V.; Dwivedi, P. A particle swarm optimization approach to multi criteria recommender system utilizing effective similarity measures 2017 9th International Conference on Machine Learning and Computing ACM Digital Library
P6 Musto, C.; de Gemmis, M.; Semeraro, G.; Lops, P. A multi-criteria recommender system exploiting aspect-based sentiment analysis of users’ reviews 2017 Eleventh ACM Conference on Recommender Systems ACM Digital Library
P7 Park, Y. Recommending personalized tips on new courses for guiding course selection 2017 South-East Conference ACM Digital Library
P8 Sreepada, R. S.; Patra, B. K.; Hernando, A. Multi-criteria recommendations through preference learning 2017 Fourth ACM IKDD Conferences on Data Sciences ACM Digital Library
P9 Zheng, Y. Criteria chains: A novel multi-criteria recommendation approach 2017 22nd International Conference on Intelligent User Interfaces ACM Digital Library
P10 Tallapally, D.; Sreepada, R. S.; Patra, B. K.; Babu, K. S. User preference learning in multi-criteria recommendations using stacked auto encoders 2018 12th ACM Conference on Recommender Systems ACM Digital Library
P11 Zheng, Y.; Dave, T.; Mishra, N.; Kumar, H. Fairness in reciprocal recommendations 2018 26th Conference on User Modeling, Adaptation and Personalization ACM Digital Library
P12 Niknafs, A.; Charkari, N. M.; Niknafs, A. A. PROMETHEE-based recommender system for multi-sort recommendations in on-line stores 2008 Third International Conference on Digital Information Management IEEE Xplore
P13 Hwang, C.-S.; Kao, Y.-C.; Yu, P. Integrating multiple linear regression and multicriteria collaborative filtering for better recommendation 2010 International Conference on Computational Aspects of Social Networks IEEE Xplore
P14 Liu, L.; Lecue, F.; Mehandjiev, N.; Xu, L. Using context similarity for service recommendation 2010 IEEE Fourth International Conference on Semantic Computing IEEE Xplore
P15 Shambour, Q.; Lu, J. A framework of hybrid recommendation system for government-to-business personalized e-services 2010 Seventh International Conference on Information Technology: New Generations IEEE Xplore
P16 Zarrinkalam, F.; Kahani, M. A multi-criteria hybrid citation recommendation system based on linked data 2012 2nd International eConference on Computer and Knowledge Engineering IEEE Xplore
P17 Boulkrinat, S.; Hadjali, A.; Mokhtari, A. Enhancing recommender systems prediction through qualitative preference relations 2013 11th International Symposium on Programming and Systems IEEE Xplore
P18 Samatthiyadikun, P.; Takasu, A.; Maneeroj, S. Bayesian model for a multicriteria recommender system with support vector regression 2013 IEEE 14th International Conference on Information Reuse & Integration IEEE Xplore
P19 Bokde, D. K.; Girase, S.; Mukhopadhyay, D. An approach to a university recommendation by multi-criteria collaborative filtering and dimensionality reduction techniques 2015 IEEE International Symposium on Nanoelectronic and Information Systems IEEE Xplore
P20 Sharma, Y.; Bhatt, J.; Magon, R. A multi-criteria review-based hotel recommendation system 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing IEEE Xplore
P21 Asawarangsee, T.; Maneeroj, S. A novel aggregation technique for multi-criteria recommendation 2016 13th International Joint Conference on Computer Science and Software Engineering IEEE Xplore
P22 Ashley-Dejo, E.; Ngwira, S. M.; Zuva, T. A context-aware proactive recommender system for tourist 2016 International Conference on Advances in Computing and Communication Engineering IEEE Xplore
P23 Hassan, M.; Hamada, M. Enhancing learning objects recommendation using multi-criteria recommender systems 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering IEEE Xplore
P24 Wijayanto, A.; Winarko, E. Implementation of multi-criteria collaborative filtering on cluster using Apache Spark 2016 2nd International Conference on Science and Technology-Computer IEEE Xplore
P25 Hamada, M.; Odu, N. B.; Hassan, M. A fuzzy-based approach for modelling preferences of users in multi-criteria recommender systems 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip IEEE Xplore
P26 Mohamed, H.; Abdulsalam, L.; Mohammed, H. Adaptive genetic algorithm for improving prediction accuracy of a multi-criteria recommender system 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip IEEE Xplore
P27 Turk, A. M.; Bilge, A. A robust multi-criteria collaborative filtering algorithm 2018 Innovations in Intelligent Systems and Applications IEEE Xplore
P28 Manouselis, N.; Costopoulou, C. Experimental analysis of design choices in multiattribute utility collaborative filtering 2007 International Journal of Pattern Recognition and Artificial Intelligence ISI Web of Knowledge
P29 Yin, Z.; Yueting, Z.; Jiangqin, W.; Liang, Z. Applying probabilistic latent semantic analysis to multi-criteria recommender system 2009 AI Communications ISI Web of Knowledge
P30 Palanivel, K.; Sivakumar, R. A study on implicit feedback in multicriteria e-commerce recommender system 2010 Journal of Electronic Commerce Research ISI Web of Knowledge
P31 Dixit, V. S.; Mehta, H.; Bedi, P. A proposed framework for group-based multi-criteria recommendations 2014 Applied Artificial Intelligence ISI Web of Knowledge
P32 Mikeli, A.; Apostolou, D.; Despotis, D. A new recommendation technique for interval scaled multi-criteria rating systems incorporating intensity of preferences 2015 Intelligent Decision Technologies ISI Web of Knowledge
P33 Hamada, M.; Hassan, M. Artificial neural networks and particle swarm optimization algorithms for preference prediction in multi-criteria recommender systems 2018 Informatics ISI Web of Knowledge
P34 Chen, D.-N.; Hu, P. J.-H.; Kuo, Y.-R.; Liang, T.-P. A web-based personalized recommendation system for mobile phone selection: Design, implementation, and evaluation 2010 Expert Systems with Applications ScienceDirect
P35 Huang, S.-l. Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods 2011 Electronic Commerce Research and Applications ScienceDirect
P36 Liu, H.; He, J.; Wang, T.; Song, W.; Du, X. Combining user preferences and user opinions for accurate recommendation 2013 Electronic Commerce Research and Applications ScienceDirect
P37 Hu, Y.-C. Nonadditive similarity-based single-layer perceptron for multi-criteria collaborative filtering 2014 Neurocomputing ScienceDirect
P38 Li, Y.-M.; Chou, C.-L.; Lin, L.-F. A social recommender mechanism for location-based group commerce 2014 Information Sciences ScienceDirect
P39 Marin, L.; Moreno, A.; Isern, D. Automatic preference learning on numeric and multi-valued categorical attributes 2014 Knowledge-Based Systems ScienceDirect
P40 Nilashi, M.; bin Ibrahim, O.; Ithnin, N. Hybrid recommendation approaches for multi-criteria collaborative filtering 2014 Expert Systems with Applications ScienceDirect
P41 Son, L. H.; Thong, N. T. Intuitionistic fuzzy recommender systems: An effective tool for medical diagnosis 2015 Knowledge-Based Systems ScienceDirect
P42 Ali, M.; Son, L. H.; Thanh, N. D.; Minh, N. V. A neutrosophic recommender system for medical diagnosis based on algebraic neutrosophic measures 2017 Applied Soft Computing ScienceDirect
P43 Amoretti, M.; Belli, L.; Zanichelli, F. UTravel: Smart mobility with a novel user profiling and recommendation approach 2017 Pervasive and Mobile Computing ScienceDirect
P44 Choudhary, P.; Kant, V.; Dwivedi, P. Handling natural noise in multi criteria recommender system utilizing effective similarity measure and particle swarm optimization 2017 Procedia Computer Science ScienceDirect
P45 Kermany, N. R.; Alizadeh, S. H. A hybrid multi-criteria recommender system using ontology and neuro-fuzzy techniques 2017 Electronic Commerce Research and Applications ScienceDirect
P46 Yuen, K. K. F. The fuzzy cognitive pairwise comparisons for ranking and grade clustering to build a recommender system: An application of smartphone recommendation 2017 Engineering Applications of Artificial Intelligence ScienceDirect
P47 Akcayol, M. A.; Utku, A.; Aydoğan, E.; Mutlu, B. A weighted multi-attribute-based recommender system using extended user behavior analysis 2018 Electronic Commerce Research and Applications ScienceDirect
P48 Castillo, A.; Meer, D. V.; Castellanos, A. ExUP recommendations: Inferring user’s product metadata preferences from single-criterion rating systems 2018 Decision Support Systems ScienceDirect
P49 Nilashi, M.; Ibrahim, O.; Yadegaridehkordi, E.; Samad, S.; Akbari, E.; Alizadeh, A. Travelers decision making using online review in social network sites: A case on TripAdvisor 2018 Journal of Computational Science ScienceDirect
P50 Núñez-Valdez, E. R.; Quintana, D.; Crespo, R. G.; Isasi, P.; Herrera-Viedma, E. A recommender system based on implicit feedback for selective dissemination of ebooks 2018 Information Sciences ScienceDirect
P51 Song, W.; Sakao, T. An environmentally conscious PSS recommendation method based on users’ vague ratings: A rough multi-criteria approach 2018 Journal of Cleaner Production ScienceDirect
P52 Wasid, M.; Ali, R. An improved recommender system based on multi-criteria clustering approach 2018 Procedia Computer Science ScienceDirect
P53 Adomavicius, G.; Kwon, Y. New recommendation techniques for multicriteria rating systems 2007 IEEE Intelligent Systems Scopus
P54 Lee, H.-H.; Teng, W.-G. Incorporating multi-criteria ratings in recommendation systems 2007 IEEE International Conference on Information Reuse and Integration Scopus
P55 Hwang, C.-S. Genetic algorithms for feature weighting in multi-criteria recommender systems 2010 Journal of Convergence Information Technology Scopus
P56 Lousame, F. P.; Sanchez, E. Multicriteria predictors using aggregation functions based on item views 2010 10th International Conference on Intelligent Systems Design and Applications Scopus
P57 Tangphoklang, P.; Maneeroj, S.; Takasu, A. Advanced representative and dynamic user profile based on MCDM for multi-criteria RS 2010 IADIS International Conference Information Systems Scopus
P58 Akhtarzada, A.; Calude, C. S.; Hosking, J. A multi-criteria metric algorithm for recommender systems 2011 Fundamenta Informaticae Scopus
P59 Lakiotaki, K.; Matsatsinis, N. F.; Tsoukias, A. Multicriteria user modeling in recommender systems 2011 IEEE Intelligent Systems Scopus
P60 Palanivel, K.; Sivakumar, R. A study on collaborative recommender system using fuzzy-multicriteria approaches 2011 International Journal of Business Information Systems Scopus
P61 Shambour, Q.; Lu, J. Integrating multi-criteria collaborative filtering and trust filtering for personalized recommender systems 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making Scopus
P62 Samatthiyadikun, P.; Takasu, A.; Maneeroj, S. Multicriteria collaborative filtering by Bayesian model-based user profiling 2012 IEEE 13th International Conference on Information Reuse & Integration Scopus
P63 Premchaiswadi, W.; Poompuang, P. Hybrid profiling for hybrid multicriteria recommendation based on implicit multicriteria information 2013 Applied Artificial Intelligence Scopus
P64 Agathokleous, M.; Tsapatsoulis, N. Learning user models in multi-criteria recommender systems 2014 Engineering Applications of Neural Networks Scopus
P65 Bilge, A.; Kaleli, C. A multi-criteria item-based collaborative filtering framework 2014 11th International Joint Conference on Computer Science and Software Engineering Scopus
P66 Hdioud, F.; Frikh, B.; Ouhbi, B. Bootstrapping recommender systems based on a multi-criteria decision making approach 2014 International Conference on Next Generation Networks and Services Scopus
P67 Hu, Y.-C. A multicriteria collaborative filtering approach using the indifference relation and its application to initiator recommendation for group-buying 2014 Applied Artificial Intelligence Scopus
P68 Manouselis, N.; Kyrgiazos, G.; Stoitsis, G. Exploratory study of multi-criteria recommendation algorithms over technology enhanced learning datasets 2014 Journal of E-Learning and Knowledge Society Scopus
P69 Pinandito, A.; Ananta, M. T.; Brata, K. C.; Fanani, L. Alternatives weighting in analytic hierarchy process of mobile culinary recommendation system using fuzzy 2015 ARPN Journal of Engineering and Applied Sciences Scopus
P70 Sneha, Y. S.; Mahadevan, G. A novel approach to personalized recommender systems based on multi criteria ratings 2015 Research Journal of Applied Sciences, Engineering and Technology Scopus
P71 Bankshinategh, B.; Spanakis, G.; Zaiane, O.; ElAtia, S. A course recommender system based on graduating attributes 2017 9th International Conference on Computer Supported Education Scopus
P72 Goswami, A.; Dwivedi, P.; Kant, V. Trust-enhanced multi-criteria recommender system 2017 Advances in Intelligent Systems and Computing Scopus
P73 Hassan, M.; Hamada, M. A neural networks approach for improving the accuracy of multi-criteria recommender systems 2017 Applied Sciences Scopus
P74 Leal, F.; González-Vélez, H.; Malheiro, B.; Burguillo, J. C. Profiling and rating prediction from multi-criteria crowd-sourced hotel ratings 2017 31st European Conference on Modelling and Simulation Scopus
P75 Majumder, G. S.; Dwivedi, P.; Kant, V. Matrix factorization and regression-based approach for multi-criteria recommender system 2017 Information and Communication Technology for Intelligent Systems Scopus
P76 Karacapilidis, N.; Hatzieleftheriou, L. Exploiting similarity measures in multi-criteria based recommendations 2003 E-Commerce and Web Technologies Springer Link
P77 Manouselis, N.; Costopoulou, C. Preliminary study of the expected performance of MAUT collaborative filtering algorithms 2008 The Open Knowlege Society Springer Link
P78 Matsatsinis, N. F.; Manarolis, E. A. New hybrid recommender approaches: An application to equity funds selection 2009 Algorithmic Decision Theory Springer Link
P79 Naak, A.; Hage, H.; Aïmeur, E. A multi-criteria collaborative filtering approach for research paper recommendation in Papyres 2009 E-Technologies: Innovation in an Open World Springer Link
P80 Bitonto, P. D.; Laterza, M.; Roselli, T.; Rossano, V. Multi-criteria retrieval in cultural heritage recommendation systems 2010 Knowledge-Based and Intelligent Information and Engineering Systems Springer Link
P81 Maneeroj, S.; Samatthiyadikun, P.; Chalermpornpong, W.; Panthuwadeethorn, S.; Takasu, A. Ranked criteria profile for multi-criteria rating recommender 2012 Information Systems, Technology and Management Springer Link
P82 Fan, J.; Xu, L. A robust multi-criteria recommendation approach with preference-based similarity and support vector machine 2013 Advances in Neural Networks Springer Link
P83 Jannach, D.; Zanker, M.; Fuchs, M. Leveraging multi-criteria customer feedback for satisfaction analysis and improved recommendations 2014 Information Technology & Tourism Springer Link
P84 Nilashi, M.; Ibrahim, O. B.; Ithnin, N.; Zakaria, R. A multi-criteria recommendation system using dimensionality reduction and neuro-fuzzy techniques 2014 Soft Computing Springer Link
P85 Chen, T.; Chuang, Y. H. Fuzzy and nonlinear programming approach for optimizing the performance of ubiquitous hotel recommendation 2015 Journal of Ambient Intelligence and Humanized Computing Springer Link
P86 Li, S. T.; Pham, T. T.; Chuang, H. C.; Wang, Z.-W. Does reliable information matter? Towards a trustworthy co-created recommendation model by mining unboxing reviews 2015 Information Systems and e-Business Management Springer Link
P87 Parveen, R.; Kant, V.; Dwivedi, P.; Jaiswal, A. K. Enhancing recommendation quality of a multi criterion recommender system using genetic algorithm 2015 Mining Intelligence and Knowledge Exploration Springer Link
P88 Jhalani, T.; Kant, V.; Dwivedi, P. A linear regression approach to multi-criteria recommender system 2016 Data Mining and Big Data Springer Link
P89 Kant, V.; Jhalani, T.; Dwivedi, P. Enhanced multi-criteria recommender system based on fuzzy Bayesian approach 2017 Multimedia Tools and Applications Springer Link
P90 Ko, H.-G.; Ko, I.-Y.; Lee, D. Multi-criteria matrix localization and integration for personalized collaborative filtering in IoT environments 2017 Multimedia Tools and Applications Springer Link
P91 Leal, F.; Malheiro, B.; González-Vélez, H.; Burguillo, J. C. Trust-based modelling of multi-criteria crowdsourced data 2017 Data Science and Engineering Springer Link
P92 Ding, Y.; Li, S.; Yu, W. Multi-criteria recommendation schemes based on factorization machines 2018 Cluster Computing Springer Link
P93 Ding, Y.; Li, S.; Yu, W.; Wang, J.; Liu, M. A unified neural model for review-based rating prediction by leveraging multi-criteria ratings and review text 2018 Cluster Computing Springer Link

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monti, D., Rizzo, G. & Morisio, M. A systematic literature review of multicriteria recommender systems. Artif Intell Rev 54, 427–468 (2021). https://doi.org/10.1007/s10462-020-09851-4

Download citation


  • Recommender system
  • Multicriteria recommendation
  • Systematic literature review
  • Survey