Skip to main content
Log in

Machine learning in telemetry data mining of space mission: basics, challenging and future directions

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The development of an intelligent artificial satellite health monitoring system is a key issue in aerospace engineering that determines satellite health status and failure using telemetry data. The modern design of data mining and machine learning technologies allows the use of satellite telemetry data and the mining of integrated information to produce an advanced health monitoring system. This paper reviews the current status and presents a framework of necessary processes on data mining to solving various problems in telemetry data such as error detection, prediction, summarization, and visualization of large quantities, and help them understand the health status of the satellite and detect the symptoms of anomalies. Machine learning technologies that include neural networks, fuzzy sets, rough sets, support vector machines, Naive Bayesian, swarm optimization, and deep learning are also presented. Also, this paper reviews a wide range of existing satellite health monitoring solutions and discusses them in the framework of remote data mining techniques. In addition, we are discussing the analysis of space debris flow analysis and the prediction of low earth orbit collision based on our orbital Petri nets model. Challenges to be addressed and future directions of research are identified and an extensive bibliography is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelghafar S, Darwish A, Hassanien AE (2020) Intelligent health monitoring systems for space missions based on data mining techniques. In: Hassanien A, Darwish A, El-Askary H (eds) Machine learning and data mining in aerospace technology, vol 836. Studies in computational intelligence. Springer, Cham, pp 65–78

    Google Scholar 

  • Abraham A, Hassanien AE, Carvalho A (2009) Foundations of computational intelligence, bio-inspired data mining, vol 4. Studies in computational intelligence. Springer, Berlin

    MATH  Google Scholar 

  • Bay S D, Schwabacher M (2003) Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: The ninth ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, pp 29–38

  • Bouleau F, Christoph S (2014) Towards the identification of outliers in satellite telemetry data by using fourier coefficients. In: 6th international conference on agents an artificial intelligence, Angers, France, pp 211–224

  • Boulila W, Farah IR, Ettabaa KS, Solaiman B, Ghézalaa HB (2011) A data mining based approach to predict spatiotemporal changes in satellite images. Int J Appl Earth Obs Geoinf 13(3):386–395

    Google Scholar 

  • Buenoa LC, Mateob CC, Justoc JS, Sanza SS (2019) Machine learning regressors for solar radiation estimation from satellite data. Sol Energy 183(1):768–775

    Google Scholar 

  • Canziani G, Ferrati R, Marinelli C, Dukatz F (2008) Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Math Biosci Eng 5(4):691–711

    MathSciNet  MATH  Google Scholar 

  • Castillo E, Gutierrez JM, Hadi AS (1997) Expert systems and probabilistic network models, monographs in computer science. Springer, New York, pp 481–527

    Google Scholar 

  • Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv (CSUR) 41(15):1–72

    Google Scholar 

  • Chang C, Nallo W, Rastogi R, Beugless D, Mickey F, Shoop A (1992) Satellite diagnostic system: an expert system for Intelsat satellite operations. In: IVth European aerospace conference (EAC), pp 321–327

  • Chebbi I, Boulila W, Farah IR (2015) Big data: concepts, challenges and applications. In: Núñez M, Nguyen N, Camacho D, Trawiński B (eds) Computational collective intelligence, vol 9330. Lecture notes in computer science. Springer, Cham, pp 638–647

    Google Scholar 

  • Chengxi D, Dewei W, Junyi Q (2008) Algorithm design of navigation satellite evaluation classification rules based on VPRS and DPSO. In: International conference on computer science and software engineering, Hubei, China, pp 12–14

  • Corinna C, Vladimir V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Culloch M, Pitts WW (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133

    MathSciNet  MATH  Google Scholar 

  • Darwish A, Hassanien AE, Das S (2019) A survey of swarm and evolutionary computing approaches for deep learning. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09719-2

    Article  Google Scholar 

  • Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AY, Gelbukh A, Zhou Q (2016) Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn Comput 8(4):757–771

    Google Scholar 

  • Datong L, Jingyue P, Song G, Xie W, Peng Y, Xiyuan P (2017) Fragment anomaly detection with prediction and statistical analysis for satellite telemetry. IEEE Access 5:19269–19281

    Google Scholar 

  • Dawei P, Datong L, Zhou J, Zhang G (2015) Anomaly detection for satellite power subsystem with associated rules based on kernel principal component analysis. Microelectron Reliab 55:2082–2086

    Google Scholar 

  • Decoste D, Sch B (2002) Training invariant support vector machines. Mach Learn 46(3):161–190

    MATH  Google Scholar 

  • Dong X, Dechang P (2014) An effective method for mining quantitative association rules with clustering partition in satellite telemetry data. In: 2014 IEEE second international conference on advanced cloud and big data, Huangshan, China, pp 26–35

  • Ermushev SA, Balashov AG (2016) A complex machine learning technique for ground target detection and classification. Int J Appl Eng Res 11(1):158–161

    Google Scholar 

  • Fang H, Xing Y, Luo K, Liming H (2012) Study of the long-term performance prediction methods using the spacecraft telemetry data. In: Prognostics & system health management conference (PHM-2012). IEEE, Beijing, China, pp 1–7

  • Finzi AE, Lavagna MR, Sangiovanni G (2003) Fuzzy inductive reasoning and possibilistic logic for space systems failure smart detection and identification. In: The 7th international symposium on artificial intelligence, robotics and automation in space: (i-SAIRAS 2003), NARA, Japan, pp 1–9

  • Fujimaki R, Yairi T, Machida K (2005) Adaptive limit-checking for spacecraft using relevance vector autoregressive model. In: 8th international symposium on artificial intelligence, robotics and automation in space, Munich, Germany

  • Fukushima Y (2008) Onboard sensor and actuator failure detection using SVM for autonomy of small satellite systems. In: The 9th international symposium on artificial intelligence and robotic automation in space: iSairas, Los Angels, CA

  • Ganchenko V, Doudkin A, Inyutin A, Marushko Y, Podenok L, Sadykhov R (2013) Neural network software diagnosis system of telemetry data. In: The 7th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications, Berlin, Germany, pp 376–380

  • Gao Y, Tianshe Y, Minqiang X, Xing N (2012) An unsupervised anomaly detection approach for spacecraft based on normal behavior clustering. In: Fifth international conference on intelligent computation technology and automation, Zhangjiajie, China, pp 478–481

  • Gao Y, Yang T, Feng J, Minqiang X (2012) A neural network approach for satellite telemetry data prediction. In: The 2012 international conference on electronics, communications and control, Washington, DC, USA, pp 150–153

  • George H J, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Eleventh conference on uncertainty in artificial intelligence. Morgan Kaufmann, pp 338–345

  • George JK, Yuan B (2003) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall of India, Upper Saddle River, pp 1–592

    Google Scholar 

  • Hashimoto M, Nishigori N, Mizutani M (1997) Operating status of monitoring and diagnostic expert system for geomagnetic satellite GEOTAIL. In: The 2nd international symposium on reducing the cost of spacecraft ground systems and operation, pp 1–8

  • Hashimoto M, Nishigori N, Mizutani M (2000) Running status of monitoring and diagnostic expert system for Mars observer Nozomi. In: The 22nd international symposium on space technology and science (ISTS)

  • Hassanien AE, Alamry E (2015) Swarm intelligence: principles, advances, and applications. Taylor & Francis Group, Boca Raton. ISBN 9781498741064—CAT# K26721

  • Hassanien AE, Suraj Z, Slezak D, Lingras P (2008) Rough computing: theories, technologies, and applications. IGI Global, Hershey, pp 239–268

    Google Scholar 

  • Hayden SC, Sweet AJ, Christa SE (2004) Livingstone model-based diagnosis of earth ob-serving one. In: AIAA 1st intelligent systems technical conference, CA, USA, pp 1–12

  • Hüsch M, Schyska BU, von Bremen L (2018) CorClustST–correlation-based clustering of big spatio-temporal datasets. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2018.04.002

    Article  Google Scholar 

  • Junger WL, Ponce A (2015) Imputation of missing data in time series for air pollutants. Atmos Environ 102:96–104

    Google Scholar 

  • Junyi X, Li Y, Le L, Jinyang L (2013) Multi-agent joint learning from argumentation. In: The 9th international workshop on agents and data mining interaction (ADMI 2013), Saint Paul, MN, USA, pp 14–25

  • Kannan SA, Devi T (2016) Mining satellite telemetry data: comparison of rule-induction and association mining techniques. In: IEEE international conference on advances in computing applications (ICACA), Coimbatore, India, pp 259–264

  • Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Gr 8(1):1–8

    MathSciNet  Google Scholar 

  • Kim S, Choi J (2008) Fault detection and diagnosis of aircraft actuators using fuzzy-tuning IMM filter. IEEE Trans Aerosp Electron Syst 44(3):940–952

    Google Scholar 

  • Kurien J, Dolores M (2008) Costs and benefits of model-based diagnosis. In: Aerospace conference. IEEE, MT, USA, pp 1–14

  • Li YQ, Wang R, Xu M (2014) Rescheduling of observing spacecraft using fuzzy neural network and ant colony algorithm. J China Aerosp 27(3):678–687

    Google Scholar 

  • Li K, Nan Y, Pengfei L, Shimin S, Yalei W, Yang L, Meng L (2017) Multi-label spacecraft electrical signal classification method based on DBN and random forest. PLoS ONE 12(5):1–19

    Google Scholar 

  • Lin J, Keogh E, Lonardi S, Lankford JP, Nystrom DM (2004) VizTree: a tool for visually mining and monitoring massive time series databases. In: The 30th VLDB conference, Toronto, Canada, pp 1269–1272

  • Little RJA, Rubin DB (1989) Statistical analysis with missing data. Wiley series in probability and mathematical statistics. Wiley, New York, pp 1–278

    Google Scholar 

  • Michael W, Thomas S, Xiao XZ, Matthias W, Hannes T (2019) Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J Photogramm Remote Sens 150:59–69

    Google Scholar 

  • Mingliang S, Zhang M, Zhou D, Baolong Z, Shunli L (2017) Fault diagnosis of satellite power system using variable precision fuzzy neighborhood rough set. In: 36th Chinese control conference (CCC), Dalian, China, pp 26–28

  • Minoru I, Yoshinobu K, Kohei G, Takehisa Y, Kazuo M (2009) Adaptive limit checking for spacecraft telemetry data using kernel principal component analysis. Trans Jpn Soc Aeronaut Sp Sci Sp Technol Jpn 7(26):11–16

    Google Scholar 

  • Muaz A, Niazi Hussain A (2011) Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics 89(2):479–499

    Google Scholar 

  • Nishigori N, Hashimoto M, Choki A, Mizutani M (2001) Fully automatic and operator-less anomaly detecting ground support system for Mars probe ’Nozomi’. In: 6th international symposium on artificial intelligence and robotics and automation in space (I-SAIRAS)

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–354

    MATH  Google Scholar 

  • Pawlak Z, Grzymala JB, Slowinski LR, Ziarko PW (1995) Rough sets. Commun ACM 38(11):88–95

    Google Scholar 

  • Quan L, XingShe Z, Peng L, Shaomin L (2010) Anomaly detection and fault diagnosis technology of spacecraft based on telemetry-mining. In: 2010 3rd international symposium on systems and control in aeronautics and astronautics (ISSCAA). IEEE, Harbin, China, pp 233–236

  • Rish I (2001) An empirical study of the naive Bayes classifier. In: IJCAI workshop on empirical methods in AI, New York, pp 41–46

  • Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–592

    MathSciNet  MATH  Google Scholar 

  • Sary C, Peterson C, Rowe I, Ames T (1998) Trend analysis for spacecraft systems using multi-modal reasoning. In: AAAI spring symposium, pp 157-162

  • Sayed GI, Darwish A, Hassanien AE (2017) Quantum multiverse optimization algorithm for optimization problems. Neural Comput Appl 31(7):2763–2780

    Google Scholar 

  • Sayed GI, Darwish A, Ella Hassanien Aboul (2018) A new chaotic whale optimization algorithm for features selection. J Classif 35(2):300–344

    MathSciNet  MATH  Google Scholar 

  • Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl Intell 49(1):188–205

    Google Scholar 

  • Sayed GI, Hassanien AE, Taher AA (2019) Feature selection via a novel chaotic crow search algorithm. Neural Comput Appl 31(1):171–188

    Google Scholar 

  • Schafer JL (1997) Analysis of incomplete multivariate data. Chapman & Hall, London, pp 1–444

    MATH  Google Scholar 

  • Talebi HA, Khorasani K, Tafazoli S (2009) A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem. IEEE Trans Neural Netw 20(1):46–60

    Google Scholar 

  • Tavakoli MM, Assadian N (2018) Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating. Adv Sp Res 61(6):1588–1599

    Google Scholar 

  • Tharwat A, Hassanien AE (2019) Quantum-behaved particle swarm optimization for parameter optimization of support vector machine. J Classif. https://doi.org/10.1007/s00357-018-9299-1

    Article  MathSciNet  MATH  Google Scholar 

  • Tharwat A, Houssein EH, Ahmed MM, Hassanien AE, Gabel T (2018) Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Appl Intelli 48(8):2268–2283

    Google Scholar 

  • Tipping M (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  • Torky M, Hassanien AE, El Fiky AH, Yazeed Alsbou (2019) Analyzing space debris flux and predicting satellites collision probability in LEO orbits based on Petri nets. IEEE Access 7:83461–83473

    Google Scholar 

  • Torky M, Hassanien AE (2018) Orbital Petri nets: a novel Petri net approach, pp 1–16. arXiv:1806.03267

  • Walter M, Buijtenen V, Gerard S, Babuska R, Verbruggen HB (1998) Adaptive fuzzy control of satellite attitude by reinforcement learning. IEEE Trans Fuzzy Syst 6(2):185–194

    Google Scholar 

  • Wang G, Qiang L, Jinglin S, Xiaofeng M (2015) Telemetry data processing flow model: a case study. Aircr Eng Aerosp Technol Int J 87(1):52–58

    Google Scholar 

  • Wijk J, Selow E (1999) Cluster and calendar based visualization of time series data. In: IEEE symposium on information visualization (infovis. i 99), San Francisco, CA, pp 4–9

  • Williams B C, Nayak P P (1996) A model-based approach to reactive self-configuring systems. In: The thirteenth national conference on artificial intelligence, pp 971–978

  • Yairi T, Nakatsugawa M, Hori K, Nakasuka S, Machida K, Ishihama N (2004) Adaptive limit checking for spacecraft telemetry data using regression tree learning. In: 2004 IEEE international conference systems, man and cybernetics. IEEE, The Hague, The Netherlands, pp 5130–5135

  • Yairi T, Kawahara Y, Fujimaki R, Sato Y, Machida K (2006) Telemetry-mining: a machine learning approach to anomaly detection and fault diagnosis for space systems. In: 2nd IEEE international conference on space mission challenges for information technology. IEEE, CA, USA, pp 8–15

  • Yairi T, Takeishi N, Oda T, Nakajima Y, Nishimura N, Takata N (2017) A data-driven health monitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction. IEEE Trans Aerosp Electron Syst 53(3):1384–1401

    Google Scholar 

  • Yao F, Li J, Chen Y, Chu X, Zhao B (2018) Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation. Adv Sp Res 63(2):1073–1084

    Google Scholar 

  • Yongnian G, Qin L, Shuangshuang W, Junfeng G (2018) Remote sensing of environment adaptive neural network based on segmented particle swarm optimization for remote-sensing estimations of vegetation biomass. Remote Sens Environ 211:248–260

    Google Scholar 

  • Yoonkyung L, Lin Y, Wahba G (2004) Multicategory support vector machines. J Am Stat Assoc 99(456):67–81

    MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Google Scholar 

  • Zein M, Adl A, Hassanien AE (2019) Spiking neural P grey wolf optimization system: novel strategies for solving non-determinism problems. Expert Syst Appl 121:204–220

    Google Scholar 

  • Zhang Z (2016) A gentle introduction to artificial neural networks. Ann Transl Med 4(19):370–375

    Google Scholar 

  • Zhang K, Jianwu X, Martin MR, Guofei J, Pelechrinis K, Zhang H (2016) Automated IT system failure prediction: a deep learning approach. In: 2016 IEEE international conference on big data (big data), Washington, DC, USA, pp 1291–1300

  • Zheng Z, Jian G, Eberhard G (2017) Swarm satellite mission scheduling & planning using hybrid dynamic mutation genetic algorithm. Acta Astronaut 137:243–253

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Academy of Scientific Research & Technology (ASRT), Egypt and coordinated by National Authority for Remote Sensing and Space Sciences (NARSS) under the TEDDSAT Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboul Ella Hassanien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Aboul Ella Hassanien, Ashraf Darwish, Sara Abdelghafar: Scientific Research Group in Egypt, (SRGE) www.egyptscience.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.E., Darwish, A. & Abdelghafar, S. Machine learning in telemetry data mining of space mission: basics, challenging and future directions. Artif Intell Rev 53, 3201–3230 (2020). https://doi.org/10.1007/s10462-019-09760-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-019-09760-1

Keywords

Navigation