Spatiotemporal clustering: a review

Abstract

An increase in the size of data repositories of spatiotemporal data has opened up new challenges in the fields of spatiotemporal data analysis and data mining. Foremost among them is “spatiotemporal clustering,” a subfield of data mining that is increasingly becoming popular because of its applications in wide-ranging areas such as engineering, surveillance, transportation, environmental and seismology studies, and mobile data analysis. This review paper presents a comprehensive review of spatiotemporal clustering approaches and their applications as well as a brief tutorial on the taxonomy of data types in the spatiotemporal domain and patterns. Additionally, the data pre-processing techniques, access methods, cluster validation, space–time scan statistics, software tools, and datasets used by various spatiotemporal clustering algorithms are highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Achtert E, Kriegel H, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering algorithms. Scientific and statistical database management (SSDBM), pp 580–585

  2. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of th ACM SIGMOD’98 international conference on management of data, Seattle, WA, pp 94–105

  3. Agrawal KP, Garg S, Sharma S, Patel P (2016) Development and validation of OPTICS based spatio-temporal clustering technique. Inf Sci (Ny) 369:388–401. https://doi.org/10.1016/j.ins.2016.06.048

    Article  Google Scholar 

  4. Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63:503–527. https://doi.org/10.1016/j.datak.2007.03.016

    Article  Google Scholar 

  5. Alatrista-Salas H, Azé J, Bringay S et al (2015) A knowledge discovery process for spatiotemporal data: application to river water quality monitoring. Ecol Inform 26:127–139. https://doi.org/10.1016/j.ecoinf.2014.05.011

    Article  Google Scholar 

  6. Alon J, Sclaroff S, Kollios G, Pavlovic V (2003) Discovering clusters in motion time-series data. In: 2003 IEEE computer society conference on computer vision and pattern, 2003 proceedings, vol 1, pp I–375. https://doi.org/10.1109/cvpr.2003.1211378

  7. Alvares LO, Palma A, Oliveira G, Bogorny V (2010) Weka-STPM: from trajectory samples to semantic trajectories. Proc Work Open Source Code 1:1–6

    Google Scholar 

  8. Alvares LO, Loy AM, Renso C, Bogorny V (2011) An algorithm to identify avoidance behavior in moving object trajectories. J Braz Comput Soc 17:193–203. https://doi.org/10.1007/s13173-011-0037-3

    Article  Google Scholar 

  9. Anbaroglu B, Cheng T, Heydecker B (2015) Non-recurrent traffic congestion detection on heterogeneous urban road networks. Transportmetrica A Transp Sci 11:754–771. https://doi.org/10.1080/23249935.2015.1087229

    Article  Google Scholar 

  10. Andrienko G, Andrienko N (2008) Spatio-temporal aggregation for visual analysis of movements. In: IEEE symposium visual analytics science and technology, 2008. VAST’08

  11. Andrienko G, Andrienko N (2010) Interactive cluster analysis of diverse types of spatiotemporal data. ACM SIGKDD Explor Newsl 11:19–28. https://doi.org/10.1145/1809400.1809405

    Article  Google Scholar 

  12. Andrienko G, Andrienko N, Wrobel S, Augustin S (2007) Visual analytics tools for analysis of movement data. ACM SIGKDD Explor Newsl 9:38–46. https://doi.org/10.1145/1345448.1345455

    Article  Google Scholar 

  13. Ankerst M, Breunig MM, Kriegel H, Sander J (1999) OPTICS : ordering points to identify the clustering structure. In: SIGMOD’99 proceedings of the1999 ACM SIGMOD international conference on management of data, vol 28, pp 49–60. https://doi.org/10.1145/304182.304187

  14. Arbelaitz O, Gurrutxaga I, Muguerza J et al (2013) An extensive comparative study of cluster validity indices. Pattern Recognit 46:243–256. https://doi.org/10.1016/j.patcog.2012.07.021

    Article  Google Scholar 

  15. Auria M, Nanni M, Pedreschi D (2006) Time-focused dentisty-based clustering of trajectories of moving objects. Spacial issue on mining spatio-tamporal data. JIIS 27:267–289

    Google Scholar 

  16. Baglioni M, de Macêdo JAF, Renso C, Trasarti R, Wachowicz M (2009) Towards semantic interpretation of movement behavior. In: Advances in GIScience, Lecture Notes in Geoinformation and Cartography. Springer, Berlin, pp 271–288. https://doi.org/10.1007/978-3-642-00318-9_14

  17. Ball GH, Hall DJ (1965) ISODATA, a novel method of data analysis and pattern classification. Stanford Research Institute, Menlo Park

    Google Scholar 

  18. Becher J, Berkhin P, Freeman E (2000) Automating exploratory data analysis for efficient data mining. In: Proceedings of the 6th ACM SIGKDD, pp 424–429

  19. Beckmann N, Begel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. ACM SIGMOD Record 19(2):322–331

    Article  Google Scholar 

  20. Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18:509–517

    Article  Google Scholar 

  21. Berkhin P (2006) Survey of clustering data mining techniques. Group Multidimens Data Recent Adv Clust. https://doi.org/10.1007/3-540-28349-8_2

    Article  Google Scholar 

  22. Bernárdez FDP (2016) Extraction of user’s stay and transitions from GPS logs: a comparison of three spatiotemporal clustering approaches. Master Thesis, Institute for Geo-information, Vienna University of Technology

  23. Birant D, Kut A (2007) ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng 60:208–221. https://doi.org/10.1016/j.datak.2006.01.013

    Article  Google Scholar 

  24. Bogorny V, Shashi S (2010) Spatial and spatio-temporal data mining. In: 2010 IEEE international conference on data mining

  25. Cai M, Revesz PZ (2000) Parametric R-Tree: an index structure for moving objects. In: Proc. of the COMAD Conf

  26. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3(1):1–27

    MathSciNet  Article  Google Scholar 

  27. Campello RJGB, Moulavi D, Sander J (2013) Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) Advances in knowledge discovery and data mining. PAKDD 2013(Lecture notes in computer science), Springer, Berlin, vol 7819, pp 160–172

  28. Cao H, Mamoulis N, Cheung DW (2005) Mining frequent spatio-temporal sequential patterns. In: ICDM: Proceedings of the fifth IEEE international conference on datamining (2005). IEEE Computer Society Press, pp 82–89. https://doi.org/10.1109/icdm.2005.95

  29. Chen XC, Faghmous JH, Khandelwal A, Kumar V (2015) Clustering dynamic spatio-temporal patterns in the presence of noise and missing data. In: International joint conference on artificial intelligence, pp 2575–2581

  30. Chudova D, Gaffney S, Mjolsness E, Smyth P (2003) Translation-invariant mixture models for curve clustering. In: Proc ninth ACM SIGKDD int conf knowl discov data min—KDD’03 79. https://doi.org/10.1145/956750.956763

  31. Clementini E, Felice PD, Oosterom PV (1993) A small set of formal topological relationships suitable for end-user interaction. In: Advances in spatial databases

  32. Compieta P, Di Martino S, Bertolotto M, Ferrucci F, Kechadi T (2007) Exploratory spatio-temporal data mining and visualization. J Vis Lang Comput 18:255–279

    Article  Google Scholar 

  33. Dataset Search—Google https://toolbox.google.com/datasetsearch. Accessed 05 Feb 2019

  34. De Lucca Siqueira F, Bogorny V (2011) Discovering chasing behavior in moving object trajectories. Trans GIS 15:667–688. https://doi.org/10.1111/j.1467-9671.2011.01285.x

    Article  Google Scholar 

  35. Doborjeh M G, Kasabov N (2015) Dynamic 3D clustering of spatio-temporal brain data in the NeuCube spiking neural network architecture on a case study of fMRI data. In: International conference on neural information processing. Springer, Cham, pp 191–198. https://doi.org/10.1007/978-3-319-26561-2_23

  36. Doborjeh MG, Kasabov N, Doborjeh ZG (2018) Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolv Syst 9(3):195–211

    Article  Google Scholar 

  37. Dunn JC (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4:95–105

    MathSciNet  Article  Google Scholar 

  38. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of second international conference on knowledge discovery and data mining, pp 226–231

  39. Faghmous JH, Kumar V (2014) A big data guide to understanding climate change: the case for theory-guided data science. Big Data 2(3):155–163. https://doi.org/10.1089/big.2014.0026

    Article  Google Scholar 

  40. Fiori A, Mignone A, Rospo G (2016) DeCoClu: density consensus clustering approach for public transport data. Inf Sci 328:378–388

    Article  Google Scholar 

  41. Gaffney S, Smyth P (1999) Trajectory clustering with mixtures of regression models. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining KDD 99, vol 10, pp 63–72. https://doi.org/10.1145/312129.312198

  42. Georgoulas G, Konstantaras A, Katsifarakis E et al (2013) “Seismic-mass” density-based algorithm for spatio-temporal clustering. Expert Syst Appl 40:4183–4189. https://doi.org/10.1016/j.eswa.2013.01.028

    Article  Google Scholar 

  43. Giannotti F, Pedreschi D (2008) Mobility, data mining and privacy: geographic knowledge discovery. Springer, Heidelberg

    Google Scholar 

  44. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the ACM KDD, pp. 330–339. https://doi.org/10.1145/1281192.1281230

  45. Giannotti F, Kujpers B, Raffaeta A, Manco G, Baglioni M, Renso C (2008) Querying and reasoning for spatio-temporal data mining. In: Giannotti F, Pedreschi D (eds) Mobility, data mining and privacy. Springer, Berlin, pp 335–374. https://doi.org/10.1007/978-3-540-75177-9_13

    Google Scholar 

  46. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29:1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  47. Güting RH (1994) An introduction to spatial database systems. VLDB J 3(4):357–399. https://doi.org/10.1007/bf01231602

    Article  Google Scholar 

  48. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data—SIGMOD’84, pp 47–57. https://doi.org/10.1145/602259.602266

  49. Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145. https://doi.org/10.1023/a:1012801612483

    Article  MATH  Google Scholar 

  50. Hall M, Frank E, Holmes G et al (2009) The WEKA data mining software. ACM SIGKDD Explor 11:10–18. https://doi.org/10.1145/1656274.1656278

    Article  Google Scholar 

  51. Han T, Yao H, Sun X et al (2016) Unsupervised discovery of crowd activities by saliency-based clustering. Neurocomputing 171:347–361. https://doi.org/10.1016/j.neucom.2015.06.048

    Article  Google Scholar 

  52. Henrich A, Six H-W, Widmayer P (1989). The LSD-tree: spatial access to multidimensional point- and non-point-objects. In: Proceedings of 15th international conference on very large data bases, Amsterdam, pp 45–53

  53. Higgs B, Abbas M (2015) Segmentation and clustering of car-following behavior: recognition of driving patterns. IEEE Trans Intell Transp Syst 16(1):81–90

    Article  Google Scholar 

  54. Hu B, Jamali M, Ester M (2013) Spatio-temporal topic modeling in mobile social media for location recommendation. In: Proceedings—IEEE international conference on data mining, ICDM, pp 1073–1078. https://doi.org/10.1109/icdm.2013.139

  55. Huang W, Xu S, Yan Y, Zipf A (2019) An exploration of the interaction between urban human activities and daily traffic conditions: a case study of Toronto, Canada. Cities 84:8–22. https://doi.org/10.1016/j.cities.2018.07.001

    Article  Google Scholar 

  56. Hudjimartsu SA, Djatna T, Ambarwari A, Apriliantona (2018) Spatial temporal clustering for hotspot using Kulldorff scan statistic method (KSS): a case in Riau Province. In: IOP conference series: earth and environmental science, vol 54, pp 012056. http://iopscience.iop.org/article/10.1088/1755-1315/54/1/012056

  57. Husch M, Schyska BU, Bremen LV (2018) CorClustST—correlation-based clustering of big spatio-temporal datasets. Future Gener Comput Syst 100:100. https://doi.org/10.1016/j.future.2018.04.002(In Press)

    Article  Google Scholar 

  58. Hwang SY, Liu YH, Chiu JK, Lim EP (2005) Mining mobile group patterns: a trajectory-based approach. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 713–718

  59. Izakian H, Pedrycz W (2013) Anomaly detection in time series data using a fuzzy C-means clustering. In: IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013 Joint. IEEE, pp 1513–1518

  60. Izakian H, Pedrycz W, Jamal I (2013) Clustering spatiotemporal data: an augmented fuzzy c-means. IEEE Trans Fuzzy Syst 21:855–868

    Article  Google Scholar 

  61. Izakian H, Pedrycz W, Jamal I (2015) Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell 39:235–244. https://doi.org/10.1016/j.engappai.2014.12.015

    Article  Google Scholar 

  62. Jeung H, Yiu ML, Zhou X, et al (2008) Discovery of convoys in trajectory databases. In: Proceedings of the VLDB endowment, vol 1, pp 1068–1080. https://doi.org/10.14778/1453856.1453971

  63. Kalnis P, Mamoulis N, Bakiras S (2005) On discovering moving clusters in spatio-temporal data. Adv Spat Temporal Databases SE 21(3633):364–381. https://doi.org/10.1007/11535331_21

    Article  Google Scholar 

  64. Kalyani D, Chaturvedi SK (2012) A survey on spatio-temporal data mining. Int J Comput Sci Netw 1(4):1–7

    Google Scholar 

  65. Kang J, Yong H (2009) Mining trajectory patterns by incorporating temporal properties. In: Proceedings of the 1st international conference on emerging databases, pp 1–6

  66. Kang JH, Welbourne W, Stewart B, Borriello G (2005) Extracting places from traces of locations. ACM SIGMOBILE Mob Comput Commun Rev 9:58. https://doi.org/10.1145/1094549.1094558

    Article  Google Scholar 

  67. Kirana AP, Sitanggang IS, Syaufina L(2016) Hotspot pattern distribution in peat land area in Sumatera based on spatio temporal clustering. In: The 2nd international symposium on LAPAN-IPB satellite for food security and environmental monitoring 2015, LISAT-FSEM 2015, vol 33, pp 635–645

  68. Kisilevieh S, Mansmann F, Nanni M, Rinzivillo S (2010) Spatio-temporal c1ustering. In: Data mining and knowledge discovery handbook, pp 855–874

  69. Kovács F, Legány C, Babos A (2005) Cluster validity measurement techniques. In: Proc 6th int symp hungarian res comput intell 2006, pp 1–11. https://doi.org/10.7547/87507315-91-9-465

  70. Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26:1481–1496

    MathSciNet  Article  Google Scholar 

  71. Kulldorff M (2018) SaTScan user guide for version 9.6. https://www.satscan.org. Accessed 20 June 2018

  72. Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14:799–810. https://doi.org/10.1002/sim.4780140809

    Article  Google Scholar 

  73. Larose DT (2005) Discovering knowledge in data: an introduction to data mining. Wiley, Hoboken

    Google Scholar 

  74. Lee CH (2012) Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Syst Appl 39:9623–9641. https://doi.org/10.1016/j.eswa.2012.02.136

    Article  Google Scholar 

  75. Lee J, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD international conference on management of data—SIGMOD’07, pp 593. https://doi.org/10.1145/1247480.1247546

  76. Leipnik MR, Albert DP (2002) GIS in law enforcement: implementation issues and case studies. CRC Press, Sacramento

    Google Scholar 

  77. Li Y, Han J, Yang J (2004) Clustering moving objects. In: Proceedings of the 2004 ACM SIGKDD international conference on knowledge discovery and data mining—KDD’04, pp 617–622. https://doi.org/10.1145/1014052.1014129

  78. Liu Y, Li Z, Xiong H, Gao X, Gao J (2010) Understanding of internal clustering validation measures. In: Proceedings of the 2010 IEEE international conference on data mining. pp 911–916. https://doi.org/10.1109/icdm.2010.35

  79. Liu J, Xue C, He Y, Dong Q, Kong F, Hong Y (2018) Dual-constraint spatiotemporal clustering approach for exploring marine anomaly patterns using remote sensing products. IEEE J Sel Top Appl Earth Obs Remote Sens 11(11):3963–3976. https://doi.org/10.1109/jstars.2018.2873216

    Article  Google Scholar 

  80. Maciag PS (2017) A survey on data mining methods for clustering complex spatiotemporal data. In: International conference: beyond databases, architectures and structures, pp 115–126. https://doi.org/10.1007/978-3-319-58274-0

  81. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

  82. Manjula A, Narsimha G (2014) A review on spatial data mining methods and applications. Int J Comput Eng Appl VII:208–218

    Google Scholar 

  83. Martino FD, Pedrycz W, Sessa S (2018) Spatiotemporal extended fuzzy C-means clustering algorithm for hotspots detection and prediction. Fuzzy Sets Syst 340:109–126

    MathSciNet  Article  Google Scholar 

  84. Mazimpaka JD, Timpf S (2016) Trajectory data mining: a review of methods and applications. J Spat Inf Sci 13:61–99. https://doi.org/10.5311/josis.2016.13.263

    Article  Google Scholar 

  85. Mikut R, Reischl M (2011) Data mining tools. Wiley Interdiscip Rev Data Min Knowl Discov 1:431–443. https://doi.org/10.1002/widm.24

    Article  Google Scholar 

  86. Miller HJ, Han J (2005) Geographic data mining and knowledge discovery, vol 2. CRC Press, Boca Raton

    Google Scholar 

  87. Milligan GW (1981) A monte carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 46:187–199. https://doi.org/10.1007/bf02293899

    Article  MATH  Google Scholar 

  88. MOD44W | LP DAAC :: NASA land data products and services. https://lpdaac.usgs.gov › MODIS › MODIS Products Table. Accessed 22 Dec 2016

  89. Murray C (2013) Oracle spatial developer’s guide, 11g release 2 (11.2) E11830-15

  90. Neill DB (2006) Detection of spatial and spatio-temporal clusters. PhD Thesis. School of Computer Science,Carnegie Mellon University, Pittsburgh. https://www.cs.cmu.edu/~neill/papers/thesis-final.pdf. Accessed 25 June 2018

  91. NYC Taxi & Limousine Commission. http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml. Accessed 21 June 2018

  92. Obe RO, Hsu LS (2015) PostGIS in action, 2nd edn. Manning Publications Co., Shelter Island, NY, p 11964

    Google Scholar 

  93. Otair M (2013) Approximate k-nearest neighbor based spatial clustering using kd- tree. Int J Database Manag Syst 5(1):97–108

    Article  Google Scholar 

  94. Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008). A clustering based approach for discovering interesting places in trajectories. In: ACMSAC. ACM Press, New York, pp 863–868

  95. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond Ser I 58:240–242

    Article  Google Scholar 

  96. Pelekis N, Kopanakis I, Marketos G, et al (2007) Similarity search in trajectory databases. In: Proceedings of the international workshop on temporal representation and reasoning, pp 129–140. https://doi.org/10.1109/time.2007.59

  97. Plenar.io-A spatio-temporal open data platform http://plenar.io. Accessed 05 Feb 2019

  98. Rendón E, Abundez I, Arizmendi A, Quiroz EM (2011) Internal versus external cluster validation indexes. Int J Comput Commun 5(1):27–34

    Google Scholar 

  99. Rinzivillo S, Pedreschi D, Nanni M et al (2008) Visually driven analysis of movement data by progressive clustering. Inf Vis 7:225–239. https://doi.org/10.1057/palgrave.ivs.9500183

    Article  Google Scholar 

  100. Rocha JAMR, Times VC, Oliveira G, et al (2010) DB-SMoT: a direction-based spatio-temporal clustering method. In: 2010 5th IEEE international conference intelligent systems, pp 114–119. https://doi.org/10.1109/is.2010.5548396

  101. Salazar GEJ, Velez AC, Parra MCM, Ortega LO (2002) A cluster validity index for comparing non-hierarchical clustering methods. EITI 2002:1–5

    Google Scholar 

  102. Samet H (1985) Using quadtree to represent spatial data. NATO ASI Ser F18:229–247

    Google Scholar 

  103. Sander J, Ester M, Kriegel HPP, Xu X (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2(2):169–194. https://doi.org/10.1023/a:1009745219419

    Article  Google Scholar 

  104. Sardadi MM, Shafry M, Jupri Z, Daman D (2008) Choosing R-tree or quadtree spatial data indexing in one oracle spatial database system to make faster showing geographical map in mobile geographical information system technology. World Academy of Science, Engineering and Technology, Paris, pp 249–257

    Google Scholar 

  105. Sellis TK, Roussopoulos N, Faloutsos C (1987) The R+-Tree: a dynamic index for multi- dimensional objects. In: VLDB, pp 507–518

  106. Shekhar S, Varsavai RR, Celik M (2008) Spatial and spatiotemporal data mining: recent advances. Data mining: next generation challenges and future directions, AAAI Press

  107. Shekhar S, Jiang Z, Ali RY et al (2015) Spatiotemporal data mining: a computational perspective. ISPRS Int J Geo-Inf 4:2306–2338. https://doi.org/10.3390/ijgi4042306

    Article  Google Scholar 

  108. Spaccapietra S, Parent C, Damiani ML, De Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65:126–146

    Article  Google Scholar 

  109. SRTM Water Body Dataset | The long term archive. https://lta.cr.usgs.gov/srtm_water_body_dataset. Accessed 14 March 2017

  110. The R project for statistical computing. https://www.r-project.org. Accessed 15 Feb 2017

  111. Tork HF (2012) Spatio-temporal clustering methods classification. In: Doctoral symposium on informatics engineering (DSIE’2012), pp 1–12. https://doi.org/10.13140/rg.2.1.3812.7204

  112. UNISYS, Atlantic tropical storm tracking by year. http://weather.unisys.com/hurricane/atlantic/. Accessed 11 March 2017

  113. Upton G, Fingleton B (1985) Spatial data analysis by example volume1: point pattern and quantitative data. Wiley, New York

    Google Scholar 

  114. Vieira MR, Bakalov P, Tsotras VJ (2009) On-line discovery of flock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems—GIS’09 286. https://doi.org/10.1145/1653771.1653812

  115. Wang X, Wang J (2010) Using clustering methods in geospatial information systems. GEOMATICA 64:347–361

    Google Scholar 

  116. Wang M., Wang A, Li A (2006) Mining spatial-temporal clusters from geo-databases. In: International conference on advanced data mining and applications. Springer Berlin, pp 263–270

  117. Weingessel A, Dimitriadou E, Dolničar S (1999) An examination of indexes for determining the number of clusters in binary data sets. Psychometrika 67:1–21. https://doi.org/10.1007/bf02294713

    MathSciNet  Article  MATH  Google Scholar 

  118. Y—U.S. Forest Service https://www.fs.fed.us/pnw/starkey/. Accessed 7 Dec 2016

  119. Yao X (2003). Research issues in spatio-temporal data mining. A white paper submitted to the University Consortium for Geographic Information Science (UCGIS) workshop on geospatial visualization and knowledge discovery, Lansdowne, Virginia, Nov. 18–20

  120. Zaghlool E, ElKaffas S, Saad, A (2015) A density-based clustering of spatio-temporal data. In: Rocha A, Correia A, Costanzo S, Reis L (eds) New contributions in information systems and technologies. Advances in Intelligent Systems and Computing, vol 354. Springer, Cham, pp 41–50. https://doi.org/10.1007/978-3-319-16528-8_5

    Google Scholar 

  121. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering databases method for very large. ACM SIGMOD Int Conf Manag Data 1:103–114. https://doi.org/10.1145/233269.233324

    Article  Google Scholar 

  122. Zhang P, Huang Y, Shekhar S, Kumar V (2003) Correlation analysis of spatial time series datasets: a filter-and-refine approach. Adv Knowl Discov Data Mining. https://doi.org/10.1007/3-540-36175-8_53

    Article  MATH  Google Scholar 

  123. Zhang D, Lee K, Lee I (2018) Hierarchical trajectory clustering for spatio-temporal periodic pattern mining. Expert Syst Appl 92:1–11

    Article  Google Scholar 

  124. Zhao Q, Xu M, Fränti P (2009) Sum-of-square based cluster validity index and significance analysis. In: Proceedings of the 17th international conference on adaptive structures and natural computing algorithms, pp 313–322

  125. Zheng Y, Zhang L, Xie X, Ma W-Y (2009) Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th international conference on World wide web - WWW’09 791. https://doi.org/10.1145/1526709.1526816

  126. Zhou P, Salzberg B (2008) The hB-pi* Tree: an optimized comprehensive access method for frequent-update multi-dimensional point data. In: Ludäscher B., Mamoulis N. (eds) Scientific and statistical database management. SSDBM 2008 (Lecture notes in computer science), vol 5069. Springer, Berlin

Download references

Acknowledgements

This work is supported by Ministry of Electronics and Information Technology, Government of India under the Visvesvaraya Ph.D. scheme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mainuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.Y., Ahmad, A., Khan, S.S. et al. Spatiotemporal clustering: a review. Artif Intell Rev 53, 2381–2423 (2020). https://doi.org/10.1007/s10462-019-09736-1

Download citation

Keywords

  • Data mining
  • Spatiotemporal clustering
  • Patterns
  • Cluster validation