Incremental methods in face recognition: a survey


Face Recognition has rapidly grown as a commercial requirement for a variety of applications in recent years. There are certain situations in which all the face images may not be available before training or the face images may be distributed at geographically apart locations. Incremental face recognition addresses these problems and possesses certain advantages i.e. being time efficient and dynamic model updation allows addition/deletion of samples on the fly. In this paper, a comprehensive review on the Incremental learning algorithms that are aimed at Face Recognition or tested over Face datasets. The contribution of this paper is three-fold: (a) a novel taxonomy of the Incremental methods have been proposed (b) a review of the face datasets used in Incremental face recognition have been carried out and (c) a performance analysis of the Incremental face recognition methods over various face datasets is also presented. Important conclusions have been drawn that will help the researchers in making suitable choices amongst various methods and datasets. This survey shall act as a useful reference to the researchers and practitioners working in incremental face recognition. Furthermore, several viable research directions have been given at the end.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Agrawal RK, Bala M, Bala R (2009) Incremental framework for feature selection and Bayesian classification for multivariate normal distribution. In: 2009 IEEE international advance computing conference, pp 1469–1474

  2. Agrawal RK, Karmeshu (2008) Perturbation scheme for online learning of features: incremental principal component analysis. Pattern Recognit 41(5):1452–1460

    MATH  Google Scholar 

  3. Azary S, Savakis A (2017) Continuous recognition with incremental learning on grassmann manifolds. In: 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp 1477–1480

  4. Balaban S (2015) Deep learning and face recognition: the state of the art Proc. SPIE 9457, Biometric and surveillance technology for human and activity identification XII, 94570B

  5. Belhumeur PN, Hespanha J, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. Technical report, Yale University, New Haven, United States

  6. Bendale A, Boult T (2014) Reliable posterior probability estimation for streaming face recognition. In: 2014 IEEE conference on computer vision and pattern recognition workshops, pp 56–63

  7. Bhowmik MK, De BK, Bhattacharjee D, Basu DK, Nasipuri M (2012). Multisensor fusion of visual and thermal images for human face identification using different svm kernels. In: 2012 IEEE long island systems, applications and technology conference (LISAT), pp 1–7

  8. Bioid face dataset. Accessed 29 Jan 2019

  9. Boukharouba K, Bako L, Lecoeuche S (2009) Incremental and decremental multi-category classification by support vector machines. In: 2009 International conference on machine learning and applications, pp 294–300

  10. Buhuş ER, Grama L, Şerbu C (2017) A facial recognition application based on incremental supervised learning. In: 2017 13th IEEE international conference on intelligent computer communication and processing (ICCP), pp 279–286

  11. Cao Y, He H, Huang HH (2011) Lift: a new framework of learning from testing data for face recognition. Neurocomputing 74(6):916–929

  12. Chen BC, Chen CS, Hsu WH (2015) Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans Multimedia 17(6):804–815

    Google Scholar 

  13. Chen W, Li Y, Pan B, Chen B (2016) Incremental learning based on block sparse kernel nonnegative matrix factorization. In: 2016 International conference on wavelet analysis and pattern recognition (ICWAPR), pp 219–224

  14. Chen WS, Pan BB, Fang B, Zou J (2008) A novel constraint non-negative matrix factorization criterion based incremental learning in face recognition. In: 2008 International conference on wavelet analysis and pattern recognition, vol 1, pp 292–297

  15. Chen X, Ziarko W (2010) Rough set-based incremental learning approach to face recognition. In: Szczuka Marcin, Kryszkiewicz Marzena, Ramanna Sheela, Jensen Richard, Qinghua Hu (eds) Rough Sets Curr Trends Comput. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 356–365

    Google Scholar 

  16. Cheng M, Fang B, Tang YY, Zhang T, Wen J (2010) Incremental embedding and learning in the local discriminant subspace with application to face recognition. IEEE Trans Syst Man Cybernet C Appl Rev 40(5):580–591

    Google Scholar 

  17. Choi Y, Ozawa S, Lee M (2014) Incremental two-dimensional kernel principal component analysis. Neurocomputing 134:280–288 Special issue on the 2011 Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering (IScIDE 2011) Learning Algorithms and Applications

    Google Scholar 

  18. Choi K, Toh KN, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recognit 45(8):2868–2883

    Google Scholar 

  19. Choi Y, Tokumoto T, Lee M, Ozawa S (2011) Incremental two-dimensional two-directional principal component analysis (i(2d) lt;sup gt;2 lt;/sup gt;pca) for face recognition. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1493–1496

  20. Connolly J, Granger E, Sabourin R (2009) Incremental adaptation of fuzzy artmap neural networks for video-based face classification. In: 2009 IEEE symposium on computational intelligence for security and defense applications, pp 1–8

  21. Connolly J, Granger E, Sabourin R (2010) An adaptive ensemble of fuzzy artmap neural networks for video-based face classification. In: IEEE congress on evolutionary computation, pp 1–8

  22. Déniz O, Castrillón M, Lorenzo J, Hernández M (2002) An incremental learning algorithm for face recognition. In: Tistarelli Massimo, Bigun Josef, Jain Anil K (eds) Biometric authentication. Springer, Berlin, Heidelberg, pp 1–9

    Google Scholar 

  23. Dhamecha TI, Singh R, Vatsa M (2016) On incremental semi-supervised discriminant analysis. Pattern Recognit 52:135–147

    Google Scholar 

  24. Dinkova P, Georgieva P, Manolova A, Milanova M (2016) Face recognition based on subject dependent hidden markov models. In: 2016 IEEE international Black Sea conference on communications and networking (BlackSeaCom), pp 1–5

  25. Dong H, Gu N (2001) Asian face image database pf01

  26. Duan G, Chen Y (2011) Batch-incremental principal component analysis with exact mean update. In: 2011 18th IEEE international conference on image processing, pp 1397–1400

  27. Ergul E (2017) Relative attribute based incremental learning for image recognition. CAAI Trans Intell Technol 2(1):1–11

    Google Scholar 

  28. Evgin G, Goceri N (2017) Deep learning in medical image analysis: recent advances and future trends. In: 11th Int. conf. on computer graphics, visualization, computer vision and image processing (CGVCVIP 2017), 20–23 July 2017, Lisbon, Portugal, pp 305–311

  29. Face recognition grand challenge dataset. Accessed 29 Jan 2019

  30. Feret face dataset. Accessed 29 Jan 2019

  31. Franco A, Maio D, (2010) Maltoni D Incremental template updating for face recognition in home environments. Pattern Recognit 43(8):2891–2903

  32. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Google Scholar 

  33. Goceri E (2018) Formulas behind deep learning success. In: Proc. of the international conference on applied analysis and mathematical modeling (ICAAMM2018), Istanbul, Turkey, p 156

  34. Goceri E, Gooya A (2018) On the importance of batch size for deep learning. In: Proceedings of the international conference on mathematics (ICOMATH2018), an Istanbul meeting for world mathematicians, minisymposium on approximation theory & minisymposium on math education, Istanbul, Turkey

  35. Gross R, Matthews I, Cohn J, Kanade T, Baker S (2010) Multi-pie. Image Vis Comput 28(5):807–813

    Google Scholar 

  36. Guan N, Tao D, Luo Z, Yuan B (2012) Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans Neural Netw Learn Syst 23(7):1087–1099

    Google Scholar 

  37. Hastie T, Tibshirani R, Friedman JJH (2001) The elements of statistical learning. vol 1. np

  38. Hisada M, Ozawa S, Zhang K, Kasabov N (2010) Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems. Evol Syst 1(1):17–27

    Google Scholar 

  39. Huang GB, Ramesh M, Berg T, Miller EL (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst

  40. Iosifidis A, Gabbouj M (2017) Class-specific kernel discriminant analysis revisited: further analysis and extensions. IEEE Trans Cybern 47(12):4485–4496

    Google Scholar 

  41. James EAK, Annadurai S (2009) Implementation of incremental linear discriminant analysis using singular value decomposition for face recognition. In: 2009 First international conference on advanced computing, pp 172–175

  42. Jia P, Yin J, Huang X, Hu D (2009) Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recognit Lett 30(16):1457–1463

    Google Scholar 

  43. Jobanputra M, Chaudhary A, Shah A, Gandhi R (2018) Real-time face recognition in hd videos: algorithms and framework. In 2018 Annual IEEE international systems conference (SysCon), pp 1–8

  44. Jung SU, Yoo JH (2007) A robust eye detection method in facial region. In: Gagalowicz André, Philips Wilfried (eds) Computer vision/computer graphics collaboration techniques. Springer, Berlin, Heidelberg, pp 596–606

    Google Scholar 

  45. Kang W, Choi JY (2006) Kernel machine for fast and incremental learning of face. In 2006 SICE-ICASE international joint conference, pp 1015–1019

  46. Kim S, Mallipeddi R, Lee M (2012) Incremental face recognition: hybrid approach using short-term memory and long-term memory. In: Huang Tingwen, Zeng Zhigang, Li Chuandong, Leung Chi Sing (eds) Neural information processing. Springer, Berlin, Heidelberg, pp 194–201

    Google Scholar 

  47. Kim S, Mallipeddi R, Lee M (2014) Incremental face recognition using rehearsal and recall processes. In: 2014 International joint conference on neural networks (IJCNN), pp 2752–2757

  48. Kim B, Park H (2012) Efficient face recognition based on mct and i(2d) lt;sup gt;2 lt;/sup gt;pca. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC), pp 2585–2590

  49. Kim TK, Stenger B, Kittler J, Cipolla R (2011) Incremental linear discriminant analysis using sufficient spanning sets and its applications. Int J Comput Vis 91(2):216–232

    MathSciNet  MATH  Google Scholar 

  50. Kouropteva O, Okun O, Pietikäinen M (2005) Incremental locally linear embedding. Pattern Recogniti 38(10):1764–1767

    MATH  Google Scholar 

  51. Kumar N, Agrawal RK, Jaiswal A (2014) Incremental and decremental exponential discriminant analysis for face recognition. Int J Comput Vis Image Process (IJCVIP) 4(1):40–55

    MATH  Google Scholar 

  52. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: 2009 IEEE 12th international conference on computer vision, pp 365–372

  53. La Torre MD, Granger E, Radtke PVW, Sabourin R, Gorodnichy DO (2012) Incremental update of biometric models in face-based video surveillance. In: The 2012 international joint conference on neural networks (IJCNN), pp 1–8

  54. Lee S, Sung J, Kim D (2007) Incremental update of linear appearance models and its application to aam: incremental aam. In: Kamel Mohamed, Campilho Aurélio (eds) Image analysis and recognition. Springer, Berlin, Heidelberg, pp 538–547

    Google Scholar 

  55. LFW face dataset. Accessed 29 Jan 2019

  56. Li M, Bao S, Qian W, Su Z, Ratha NK (2013) Face recognition using early biologically inspired features. In: 2013 IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), pp 1–6

  57. Li L, Jun Z, Fei J, Li S (2017) An incremental face recognition system based on deep learning. In: 2017 Fifteenth IAPR international conference on machine vision applications (MVA), pp 238–241

  58. Li SZ, Yi D, Lei Z, Liao S (2013) The casia nir-vis 2.0 face database. In: IEEE computer vision and pattern recognition workshops (CVPRW), 2013 IEEE conference on, pp 348–353

  59. Liang Y, Yang Y, Shen F, Zhao J, Zhu T (2017) An incremental deep learning network for on-line unsupervised feature extraction. In: Liu Derong, Xie Shengli, Li Yuanqing, Zhao Dongbin, El-Alfy El-Sayed M (eds) Neural information processing. Springer International Publishing, Cham, pp 383–392

    Google Scholar 

  60. Lin L, Wang K, Meng D, Zuo W, Zhang L (2018) Active self-paced learning for cost-effective and progressive face identification. IEEE Trans Pattern Anal Mach Intell 40(1):7–19

    Google Scholar 

  61. Liu X, Chen T, Thornton SM (2003) Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognit 36(9):1945–1959

    MATH  Google Scholar 

  62. Liu H, Duan H, Cui H, Yin Y (2016) Face recognition using training data with artificial occlusions. In: 2016 Visual communications and image processing (VCIP), pp 1–4

  63. Liu X, Liu J, Liu X, Kong Z, Yang X (2018) Incremental sparse linear regression algorithms for face recognition. In: 2018 Tenth international conference on advanced computational intelligence (ICACI), pp 69–74

  64. Liu X, Yin J, Feng Z, Dong J (2006) Incremental manifold learning via tangent space alignment. In: Schwenker Friedhelm, Marinai Simone (eds) Artificial neural networks in pattern recognition. Springer, Berlin, Heidelberg, pp 107–121

    Google Scholar 

  65. Liwicki S, Zafeiriou S, Tzimiropoulos G, Pantic M (2012) Efficient online subspace learning with an indefinite kernel for visual tracking and recognition. IEEE Trans Neural Netw Learn Syst 23(10):1624–1636

    Google Scholar 

  66. Lu GF, Jian Z, Wang Y (2015) Incremental learning from chunk data for idr/qr. Image Vis Comput 36:1–8

    Google Scholar 

  67. Lu GF, Zou J (2015) Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm. Mach Vis Appl 26(6):807–817

    Google Scholar 

  68. Lu GF, Zou J, Wang Y (2012) Incremental complete lda for face recognition. Pattern Recognit 45(7):2510–2521

    MATH  Google Scholar 

  69. Lu GF, Zou J, Wang Y (2016) A new and fast implementation of orthogonal lda algorithm and its incremental extension. Neural Process Lett 43(3):687–707

    Google Scholar 

  70. Luo W (2011) Face recognition based on Laplacian eigenmaps. In: 2011 International conference on computer science and service system (CSSS), pp 416–419

  71. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. In: Automatic face and gesture recognition, 1998. Proceedings. Third IEEE international conference on, pp 200–205

  72. Mahale G, Bhatia E, Nandy SK, Narayan R (2016) Vop: architecture of a processor for vector operations in on-line learning of neural networks. In: 2016 29th International conference on VLSI design and 2016 15th international conference on embedded systems (VLSID), pp 391–396

  73. Martinez AM, Benavente R (1998) Cvc technical report# 24. The AR Face Database

  74. Masip D, Lapedriza A, Vitria J (2009) Boosted online learning for face recognition. IEEE Trans Syst Man Cybern B Cybern 39(2):530–538

    Google Scholar 

  75. Mohd Zaki S, Yin H (2008) Semi-supervised growing neural gas for face recognition. In: Fyfe Colin, Kim Dongsup, Lee Soo-Young, Yin Hujun (eds) Intelligent data engineering and automated learning—IDEAL 2008. Springer, Berlin, Heidelberg, pp 525–532

    Google Scholar 

  76. Mutelo RM, Dlay SS, Woo WL (2008) Two dimensional incremental reduction pca: a novel appearance based technique for image representation and recognition. In: 2008 5th International conference on visual information engineering (VIE 2008), pp 588–593

  77. Nakouri H, Limam M (2015) Incremental generalized low rank approximation of matrices for visual learning and recognition. Pattern Recognit Image Anal 25(1):68–72

    Google Scholar 

  78. Nakouri H, Limam M (2016) An incremental two-dimensional principal component analysis for image compression and recognition. In: 2016 12th International conference on signal-image technology internet-based systems (SITIS), pp 725–731

  79. Orl / olivetti faces / at&t face dataset. Accessed 29 Jan 2019

  80. Oyama T, Karungaru S, Tsuge S, Mitsukura Y, Fukumi M (2008) Incremental learning method of simple-pca. In: Lovrek Ignac, Howlett Robert J, Jain Lakhmi C (eds) Knowledge-based intelligent information and engineering systems. Springer, Berlin, Heidelberg, pp 403–410

    Google Scholar 

  81. Ozawa S, Pang S, Kasabov N (2008) Adaptive face recognition system using fast incremental principal component analysis. In: Ishikawa Masumi, Doya Kenji, Miyamoto Hiroyuki, Yamakawa Takeshi (eds) Neural information processing, Berlin, Heidelberg, 2008. Springer, Berlin, Heidelberg, pp 396–405

    Google Scholar 

  82. Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of feature space and classifier for face recognition. Neural Netw 18(5):575–584

    Google Scholar 

  83. Ozawa S, Toh SL, Abe S, Pang S, Kasabov N (2005) Incremental learning of feature space and classifier for face recognition. Neural Netw 18(5):575–584 IJCNN 2005

    Google Scholar 

  84. Pang S, Ban T, Kadobayashi Y, Kasabov N (2010) Incremental and decremental lda learning with applications. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–8

  85. Pang S, Ban T, Kadobayashi Y, Kasabov NK (2012) Lda merging and splitting with applications to multiagent cooperative learning and system alteration. IEEE Trans Syst Man Cybern B Cybern 42(2):552–564

    Google Scholar 

  86. Phillips PJ, Flynn PJ, Scruggs T, Bowyer KW et al (2005) Overview of the face recognition grand challenge. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 947–954

  87. Prabhakar S, Pankanti S, Jain AK (2003) Biometric recognition: security and privacy concerns. IEEE Secur Priv 99(2):33–42

    Google Scholar 

  88. Raducanu B, Vitrià J (2008) Online nonparametric discriminant analysis for incremental subspace learning and recognition. Pattern Anal Appl 11(3):259–268

    MathSciNet  Google Scholar 

  89. Ren CX, Dai DQ (2010) Incremental learning of bidirectional principal components for face recognition. Pattern Recognit 43(1):318–330

    MATH  Google Scholar 

  90. Sakai T (2008) Monte Carlo subspace method: an incremental approach to high-dimensional data classification. In: 2008 19th International conference on pattern recognition, pp 1–4

  91. Shen F, Yu H, Sakurai K, Hasegawa O (2011) An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput Appl 20(7):1061–1074

    Google Scholar 

  92. Shi W (2009) Efficient two dimensional principal component analysis for online learning. In: 2009 Asia-Pacific conference on computational intelligence and industrial applications (PACIIA), vol 2, pp 250–253

  93. Shi W, Gong Y, Tao X, Wang J, Zheng N (2018) Improving cnn performance accuracies with min-max objective. IEEE Trans Neural Netw Learn Syst 29(7):2872–2885

    MathSciNet  Google Scholar 

  94. Sim T, Baker S, Bsat M (2001) The cmu pose, illumination, and expression (pie) database of human faces. Technical Report CMU-RI-TR-01-02, Carnegie Mellon University, Pittsburgh, PA

  95. Sisodia D, Shrivastava SK, Jain RC (2010) Isvm for face recognition. In: 2010 International conference on computational intelligence and communication networks, pp 554–559

  96. Sisodia D, Singh L, Sisodia S (2013) Incremental learning algorithm for face recognition using dct. In: 2013 IEEE international conference on emerging trends in computing, communication and nanotechnology (ICECCN), pp 282–286

  97. Soula A, Said SB, Ksantini R, Lachiri Z (2018) A novel incremental face recognition method based on nonparametric discriminant model. In: 2018 4th International conference on advanced technologies for signal and image processing (ATSIP), pp 1–6

  98. Tan H, Chen H, Wang WH, Shi, JW (2009) Incremental tensor by face synthesis estimating for face recognition. In: 2009 International conference on machine learning and cybernetics, vol 6, pp 3129–3133

  99. Tan C, Ji G (2016) A manifold learning algorithm based on incremental tangent space alignment. In: Sun Xingming, Liu Alex, Chao Han-Chieh, Bertino Elisa (eds) Cloud computing and security. Springer International Publishing, Cham, pp 541–552

    Google Scholar 

  100. Uci cmu face dataset. Accessed 29 Jan 2019

  101. Umist face dataset. Accessed 29 Jan 2019

  102. Wang JG, Sung E, Yau WY (2010) Incremental two-dimensional linear discriminant analysis with applications to face recognition. J Netw Comput Appl 33(3):314–322 Recent Advances and Future Directions in Biometrics Personal Identification

    Google Scholar 

  103. Weyrauch B, Heisele B, Huang J, Blanz V (2004) Component-based face recognition with 3d morphable models. In: IEEE computer vision and pattern recognition workshop, 2004. CVPRW’04. Conference on, pp 85–85

  104. Wijaya IGPS, Uchimura K, Koutaki G (2011) Fast and robust face recognition for incremental data. In: Koch Reinhard, Huang Fay (eds) Computer vision—ACCV 2010 workshops. Springer, Berlin, Heidelberg, pp 414–423

    Google Scholar 

  105. Wijaya IGPS, Uchimura K, Koutaki G (2011) Human face security system using alternative linear discriminant analysis based classifier. In: 2011 17th Korea-Japan joint workshop on frontiers of computer vision (FCV), pp 1–6

  106. Wong YW, Seng KP, Ang L (2011) Radial basis function neural network with incremental learning for face recognition. IEEE Trans Syst Man Cybern B Cybern 41(4):940–949

    Google Scholar 

  107. Xm2vts face dataset. Accessed 29 Jan 2019

  108. Xiang-hai C (2010) Incremental principal component analysis based on reduced subspace projection. In: 2010 2nd International conference on advanced computer control, vol. 4, pp 602–605

  109. Yan J, Lei Z, Yi D, Li SZ (2011) Towards incremental and large scale face recognition. In: 2011 International joint conference on biometrics (IJCB), pp 1–6

  110. Ye J, Yang R (2015) An incremental src method for face recognition. In: Ho Yo-Sung, Sang Jitao, Ro Yong Man, Kim Junmo, Wu Fei (eds) Advances in multimedia information processing—PCM 2015. Springer International Publishing, Cham, pp 170–180

    Google Scholar 

  111. Yi D, Lei Z, Liao S, Li SZ (2014) Learning face representation from scratch. arXiv preprint. arXiv:1411.7923

  112. Zhao H, Yuen PC (2008) Incremental linear discriminant analysis for face recognition. IEEE Trans Syst Man Cybern B Cybern 38(1):210–221

    Google Scholar 

  113. Zheng W, Tang X (2009) Fast algorithm for updating the discriminant vectors of dual-space lda. IEEE Trans Inf Forensics Secur 4(3):418–427

    Google Scholar 

  114. Zheng J, Yang D, Chen S, Wang W (2014) Incremental min-max projection analysis for classification. Neurocomputing 123:121–130 Contains Special issue articles: Advances in Pattern Recognition Applications and Methods

    Google Scholar 

  115. Zhu T, Shen F, Zhao J (2003) An incremental learning face recognition system for single sample per person. In: The 2013 international joint conference on neural networks (IJCNN), pp 1–6

Download references

Author information



Corresponding author

Correspondence to Nitin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madhavan, S., Kumar, N. Incremental methods in face recognition: a survey. Artif Intell Rev 54, 253–303 (2021).

Download citation


  • Supervised
  • Unsupervised
  • Semi-supervised
  • Learning
  • Hybrid
  • Taxonomy
  • Datasets
  • Performance