A novel chaotic selfish herd optimizer for global optimization and feature selection

Abstract

Selfish Herd Optimizer (SHO) is a recently proposed population-based metaheuristic inspired by the predatory interactions of herd and predators. It has been proved that SHO can provide competitive results in comparison to other well-known metaheuristics on various optimization problems. Like other metaheuristic algorithms, the main problem faced by the SHO is that it may easily get trapped into local optimal solutions, creating low precision and slow convergence speeds. Therefore, in order to enhance the global convergence speeds, and to obtain better performance, chaotic search have been augmented to searching process of SHO. Various chaotic maps were considered in the proposed Chaotic Selfish Herd Optimizer (CSHO) algorithm in order to replace the value of survival parameter of each searching agent which assists in controlling both exploration and exploitation. The performance of the proposed CSHO is compared with recent high performing meta-heuristics on 13 benchmark functions having unimodal and multimodal properties. Additionally the performance of CSHO as a feature selection approach is compared with various state-of-the-art feature selection approaches. The simulation results demonstrated that the chaotic maps (especially tent map) are able to significantly boost the performance of SHO. Moreover, the results clearly indicated the competency of CSHO in achieving the optimal feature subset by accomplishing maximum accuracy and a minimum number of features.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmad S, Mafarja M, Faris H, Aljarah I (2018) Feature selection using salp swarm algorithm with chaos. In Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. ACM. pp 65–69

  2. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37(8):5682–5687

    Google Scholar 

  3. Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci Numer Simul 16(9):3696–3703

    MATH  Google Scholar 

  4. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    MathSciNet  MATH  Google Scholar 

  5. Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 46(3):175–185

    MathSciNet  Google Scholar 

  6. Arora S, Anand P (2017) Chaos-enhanced flower pollination algorithms for global optimization. J Intell Fuzzy Syst 33(6):3853–3869

    Google Scholar 

  7. Arora S, Anand P (2019) Binary butterfly optimization approaches for feature selection. Expert Syst Appl 116:147–160

    Google Scholar 

  8. Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42(8):3325–3335

    Google Scholar 

  9. Arora S, Singh S (2017) An improved butterfly optimization algorithm with chaos. J Intell Fuzzy Syst 32(1):1079–1088

    MATH  Google Scholar 

  10. Arora S, Singh S (2017) An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization. Int J Interact Multimedia Artif Intell 4(4):14–21

    Google Scholar 

  11. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Google Scholar 

  12. Arora S, Anand P (2018) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 1–21

  13. Arora S, Singh S (2014) Performance research on firefly optimization algorithm with mutation. In: International conference, computing & systems

  14. Balasaraswathi VR, Sugumaran M, Hamid Y (2017) Feature selection techniques for intrusion detection using non-bio-inspired and bio-inspired optimization algorithms. J Commun Inf Netw 2(4):107–119

    Google Scholar 

  15. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532

    Google Scholar 

  16. Chen H, Jiang W, Li C, Li R (2013) A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm. Math Probl Eng. https://doi.org/10.1155/2013/524017

    Google Scholar 

  17. Chen Q, Liu B, Zhang Q, Liang J (2015) Evaluation criteria for CEC special session and competition on bound constrained single-objective computationally expensive numerical optimization. In: CEC

  18. Dash R, Dash PK, Bisoi R (2014) A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction. Swarm Evol Comput 19:25–42

    Google Scholar 

  19. Dougan B, Olmez T (2015) A new metaheuristic for numerical function optimization: vortex search algorithm. Inf Sci 293:125–145

    Google Scholar 

  20. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381

    Google Scholar 

  21. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65

    Google Scholar 

  22. Fausto F, Cuevas E, Valdivia A, González A (2017) A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160:39–55

    Google Scholar 

  23. Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27(2):83–85

    Google Scholar 

  24. Fu J-F, Fenton RG, Cleghorn WL (1991) A mixed integer-discrete-continuous programming method and its application to engineering design optimization. Eng Optim 17(4):263–280

    Google Scholar 

  25. Gandomi AH, Yang X-S (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    MathSciNet  Google Scholar 

  26. Gandomi A, Yang X-S, Talatahari S, Alavi A (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    MathSciNet  MATH  Google Scholar 

  27. Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340

    MathSciNet  MATH  Google Scholar 

  28. Goldberg DE (2006) Genetic algorithms. Pearson Education, Delhi

    Google Scholar 

  29. Gu S, Cheng R, Jin Y (2018) Feature selection for high-dimensional classification using a competitive swarm optimizer. Soft Comput 22(3):811–822

    Google Scholar 

  30. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, London

    Google Scholar 

  31. He D, He C, Jiang L-G, Zhu H-W, Hu G-R (2001) Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans Circuits Syst I Fundam Theory Appl 48(7):900–906

    MathSciNet  MATH  Google Scholar 

  32. Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 28(1):57–85

    Google Scholar 

  33. Jordehi AR (2015) Chaotic bat swarm optimisation (cbso). Appl Soft Comput 26:523–530

    Google Scholar 

  34. Joshi H, Arora S (2017) Enhanced grey wolf optimization algorithm for global optimization. Fundam Inform 153(3):235–264

    MathSciNet  MATH  Google Scholar 

  35. Kabir MM, Shahjahan M, Murase K (2011) A new local search based hybrid genetic algorithm for feature selection. Neurocomputing 74(17):2914–2928

    Google Scholar 

  36. Kalra S, Arora S (2016) Firefly algorithm hybridized with flower pollination algorithm for multimodal functions. In: International congress on information and communication technology. Springer, pp 207–219

  37. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Global Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  38. Kaur G, Arora S (2018) Chaotic whale optimization algorithm. J Comput Des Eng 5:275–284

    Google Scholar 

  39. Kohli M, Arora S (2018) Chaotic grey wolf optimization algorithm for constrained optimization problems. J Comput Des Eng 5(4):458–472

    Google Scholar 

  40. Koupaei JA, Hosseini S, Ghaini FM (2016) A new optimization algorithm based on chaotic maps and golden section search method. Eng Appl Artif Intell 50:201–214

    Google Scholar 

  41. Lewis A, Mostaghim S, Randall M (2008) Evolutionary population dynamics and multi-objective optimisation problems. In: Multi-objective optimization in computational intelligence: theory and practice, pp 185–206

  42. Li Q, Chen H, Huang H, Zhao X, Cai Z, Tong C, Liu W, Tian X (2017) An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput Math Methods Med. https://doi.org/10.1155/2017/9512741

    Google Scholar 

  43. Li-Jiang Y, Tian-Lun C (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38(2):168

    Google Scholar 

  44. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502

    Google Scholar 

  45. Lu H, Wang X, Fei Z, Qiu M (2014) The effects of using chaotic map on improving the performance of multiobjective evolutionary algorithms. Math Probl Eng. https://doi.org/10.1155/2014/924652

    MathSciNet  MATH  Google Scholar 

  46. Mafarja M, Abdullah S (2013) Record-to-record travel algorithm for attribute reduction in rough set theory. J Theor Appl Inf Technol 49(2):507–513

    MATH  Google Scholar 

  47. Mafarja M, Abdullah S (2015) A fuzzy record-to-record travel algorithm for solving rough set attribute reduction. Int J Syst Sci 46(3):503–512

    MATH  Google Scholar 

  48. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312

    Google Scholar 

  49. Mafarja M, Mirjalili S (2018) Whale optimization approaches for wrapper feature selection. Appl Soft Comput 62:441–453

    Google Scholar 

  50. Mafarja M, Aljarah I, Heidari AA, Hammouri AI, Faris H, Ala MA-Z, Mirjalili S (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl Based Syst 145:24–45

    Google Scholar 

  51. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Google Scholar 

  52. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Google Scholar 

  53. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Google Scholar 

  54. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  55. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  56. Naanaa A (2015) Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization. Appl Math Comput 269:402–411

    MathSciNet  MATH  Google Scholar 

  57. Park T, Ryu KR (2010) A dual-population genetic algorithm for adaptive diversity control. IEEE Trans Evol Comput 14(6):865–884

    Google Scholar 

  58. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821

    MathSciNet  MATH  Google Scholar 

  59. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

    Google Scholar 

  60. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25(5):1077–1097

    Google Scholar 

  61. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  62. Sayed SA-F, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recognit Lett 77:21–27

    Google Scholar 

  63. Sayed GI, Hassanien AE, Azar AT (2017) Feature selection via a novel chaotic crow search algorithm. Neural Comput Appl 31:171–188

    Google Scholar 

  64. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48:3462–3481

    Google Scholar 

  65. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  66. Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276

    Google Scholar 

  67. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press, Bristol

    Google Scholar 

  68. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspir Comput 2(2):78–84

    Google Scholar 

  69. Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34(4):1366–1375

    MathSciNet  Google Scholar 

  70. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    MathSciNet  Google Scholar 

  71. Zawbaa HM, Emary E, Grosan C (2016) Feature selection via chaotic antlion optimization. PloS ONE 11(3):e0150652

    Google Scholar 

  72. Zorarpacı E, Özel SA (2016) A hybrid approach of differential evolution and artificial bee colony for feature selection. Expert Syst Appl 62:91–103

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sankalap Arora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anand, P., Arora, S. A novel chaotic selfish herd optimizer for global optimization and feature selection. Artif Intell Rev 53, 1441–1486 (2020). https://doi.org/10.1007/s10462-019-09707-6

Download citation

Keywords

  • Selfish herd optimizer
  • Chaotic selfish herd optimizer
  • Global optimization
  • Feature selection
  • Chaos theory