Skip to main content
Log in

Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In recent times, technological advancement boosts the desire of utilizing the autonomous Unmanned Aerial Vehicle (UAV) in both civil and military sectors. Among various UAVs, the ability of rotary wing UAVs (RUAVs) in vertical take-off and landing, to hover and perform quick maneuvering attract researchers to develop models fully autonomous control framework. The majority of first principle techniques in modeling and controlling RUAV face challenges in incorporating and handling various uncertainties. Recently various fuzzy and neuro-fuzzy based intelligent systems are utilized to enhance the RUAV’s modeling and control performance. However, the majority of these fuzzy systems are based on batch learning methods, have static structure, and cannot adapt to rapidly changing environments. The implication of Evolving Intelligent System based model-free data-driven techniques can be a smart option since they can adapt their structure and parameters to cope with sudden changes in the behavior of RUAVs real-time flight. They work in a single pass learning fashion which is suitable for online real-time deployment. In this paper, state of the art of various fuzzy systems from the basic fuzzy system to evolving fuzzy system, their application in a RUAV namely quadcopter with existing limitations, and possible opportunities are analyzed. Besides, a variety of first principle techniques to control the quadcopter, their impediments, and conceivable solution with recently employed evolving fuzzy controllers are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiyev RH, Kaynak O (2010) Type 2 fuzzy neural structure for identification and control of time-varying plants. IEEE Trans Ind Electron 57(12):4147–4159

    Article  Google Scholar 

  • Aleksandrov D, Penkov I (2012) Energy consumption of mini uav helicopters with different number of rotors. In: 11th international symposium topical problems in the field of electrical and power engineering, pp 259–262

  • Angelov P (2010) Evolving takagi-sugeno fuzzy systems from streaming data eTS+. Evol Intell Syst Methodol Appl 12:21

    Google Scholar 

  • Angelov P (2011) Fuzzily connected multimodel systems evolving autonomously from data streams. IEEE Trans Syst Man Cybern Part B (Cybernetics) 41(4):898–910

    Article  Google Scholar 

  • Angelov P, Filev D (2005) Simpl\(_{-}\)ets: a simplified method for learning evolving takagi-sugeno fuzzy models. In: IEEE The 14th IEEE international conference on, fuzzy systems, 2005. FUZZ’05. pp 1068–1073

  • Angelov P, Yager R (2012) A new type of simplified fuzzy rule-based system. Int J General Syst 41(2):163–185

    Article  MathSciNet  MATH  Google Scholar 

  • Angelov PP, Filev DP (2004) An approach to online identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(1):484–498

    Article  Google Scholar 

  • Astilla OFD, Guerrero JS, Mendoza RSS, Roxas MTP, Sy ACT, Vicerra RRP, Dadios EP, Cruz ARD, Roxas EA, Bandala AA (2015) Obstacle avoidance of hybrid mobile-quadrotor vehicle with range sensors using fuzzy logic control. In: Humanoid, nanotechnology, information technology, communication and control, environment and management (HNICEM), 2015 international conference on, IEEE, pp 1–8

  • Babaei A, Mortazavi M, Moradi M (2011) Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles. Appl Soft Comput 11(1):365–372

    Article  Google Scholar 

  • Bader P, Blanes S, Ponsoda E (2014) Structure preserving integrators for solving (non-) linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J Comput Appl Math 262:223–233

    Article  MathSciNet  MATH  Google Scholar 

  • Barmpounakis EN, Vlahogianni EI, Golias JC (2016) Unmanned aerial aircraft systems for transportation engineering: current practice and future challenges. Int J Transp Sci Technol 5(3):111–122

    Article  Google Scholar 

  • Bayes T, Price R, Canton J (1763) An essay towards solving a problem in the doctrine of chances. C. Davis, Printer to the Royal Society of London

  • Beard RW, Kingston D, Quigley M, Snyder D, Christiansen R, Johnson W, McLain T, Goodrich M (2005) Autonomous vehicle technologies for small fixed-wing uavs. J Aerosp Comput Inf Commun 2(1):92–108

    Article  Google Scholar 

  • Beloev IH (2016) A review on current and emerging application possibilities for unmanned aerial vehicles. Acta Technol Agric 19(3):70–76

    Google Scholar 

  • Black M (1937) Vagueness. an exercise in logical analysis. Philos Sci 4(4):427–455

    Article  MathSciNet  Google Scholar 

  • Bouabdallah S, Siegwart R (2005) Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Robotics and automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE international conference on, IEEE, pp 2247–2252

  • Bouabdallah S, Murrieri P, Siegwart R (2004a) Design and control of an indoor micro quadrotor. In: Robotics and automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on, IEEE, vol 5, pp 4393–4398

  • Bouabdallah S, Noth A, Siegwart R (2004b) Pid vs lq control techniques applied to an indoor micro quadrotor. In: Intelligent robots and systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ international conference on, IEEE, vol 3, pp 2451–2456

  • Bouchachia A, Vanaret C (2014) Gt2fc: an online growing interval type-2 self-learning fuzzy classifier. IEEE Trans Fuzzy Syst 22(4):999–1018

    Article  Google Scholar 

  • Budiyono A (2008) Advances in unmanned aerial vehicles technologies. In: International symposium on intelligent unmanned system, pp 1–13

  • Carrillo LRG, López AED, Lozano R, Pégard C (2012) Quad rotorcraft control: vision-based hovering and navigation. Springer, Berlin

    Google Scholar 

  • Castro JR, Castillo O, Melin P, Rodríguez-Díaz A (2009) A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Inf Sci 179(13):2175–2193

    Article  MATH  Google Scholar 

  • Center B, Verma BP (1998) Fuzzy logic for biological and agricultural systems. Artif Intell Rev 12(1–3):213–225

    Article  MATH  Google Scholar 

  • Chen BS, Wu CS, Jan YW (2000) Adaptive fuzzy mixed h/sub 2//h/sub/spl infin//attitude control of spacecraft. IEEE Trans Aerosp Electron Syst 36(4):1343–1359

    Article  Google Scholar 

  • Chen M, Huzmezan M (2003) A combined mbpc/2 DOF H infinity controller for a quad rotor UAV. In: AIAA guidance, navigation, and control conference and exhibit, p 5520

  • Chen X, Li D, Bai Y, Xu Z (2011a) Modeling and neuro-fuzzy adaptive attitude control for eight-rotor mav. Int J Control, Autom Syst 9(6):1154–1163

    Article  Google Scholar 

  • Chen X, Li D, Xu Z, Bai Y (2011b) Robust control of quadrotor mav using self-organizing interval type-ii fuzzy neural networks (soit-iifnns) controller. Int J Intell Comput Cybern 4(3):397–412

    Article  MathSciNet  Google Scholar 

  • Chen XJ, Li D, Xu ZJ, Su DF (2012) Adaptive control of quadrotor mav using interval type-ii fuzzy neural network. Opt Precis Eng 6:026

    Google Scholar 

  • Cheng E (2015) Aerial photography and videography using drones. Peachpit Press, Berkeley

    Google Scholar 

  • Clothier RA, Walker RA (2006) Determination and evaluation of uav safety objectives

  • Coffey T, Montgomery JA (2002) The emergence of mini uavs for military applications. Def Horiz 22:1

    Google Scholar 

  • Dagher I (2012) Complex fuzzy c-means algorithm. Artifi Intell Rev 38(1):25–39

    Article  Google Scholar 

  • Das AK, Subramanian K, Sundaram S (2015) An evolving interval type-2 neurofuzzy inference system and its metacognitive sequential learning algorithm. IEEE Trans Fuzzy Syst 23(6):2080–2093

    Article  Google Scholar 

  • Deia Y, Kidouche M, Ahriche A (2015) Fully decentralized fuzzy sliding mode control with chattering elimination for a quadrotor attitude. In: Electrical engineering (ICEE), 2015 4th international conference on, IEEE, pp 1–6

  • Domingos D, Camargo G, Gomide F (2016) Autonomous fuzzy control and navigation of quadcopters. IFAC-PapersOnLine 49(5):73–78

    Article  Google Scholar 

  • Dong C, Wang N, Er MJ (2016) Self-organizing adaptive robust fuzzy neural attitude tracking control of a quadrotor. In: Control conference (CCC), 2016 35th Chinese, IEEE, pp 10,724–10,729

  • du Plessis J, Pounds PE (2014) Rotor flapping for a triangular quadrotor. In: Australiasian conference on robotics and automation 2014, The University of Melbourne

  • Edwards J, Baldwin A, Bloemer K, Callahan K, Crawford T, Fahringer T (2012) Design and testing of soldier portable uav. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 142

  • Er MJ, Deng C (2004) Online tuning of fuzzy inference systems using dynamic fuzzy q-learning. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(3):1478–1489

    Article  Google Scholar 

  • Fang Z, Gao W (2011) Adaptive integral backstepping control of a micro-quadrotor. In: Intelligent control and information processing (ICICIP), 2011 2nd international conference on, IEEE, vol 2, pp 910–915

  • Ferdaus M, Pratama M, Anavatti SG, Garratt MA, Pan Y (2018) Generic evolving self-organizing neuro-fuzzy control of bio-inspired unmanned aerial vehicles. arXiv preprint arXiv:1802.00635

  • Ferdaus MM, Anavatti SG, Garratt MA, Pratama M (2017a) Fuzzy clustering based nonlinear system identification and controller development of pixhawk based quadcopter. In: Advanced computational intelligence (ICACI), 2017 IEEE international conference on, IEEE, pp 223–230

  • Ferdaus MM, Anavatti SG, Pratama M, Garratt MA (2017b) Online identification of a rotary wing unmanned aerial vehicle from data streams

  • Flavell JH, Patto MHS, Piaget J (1996) A psicologia do desenvolvimento de Jean Piaget

  • Folmer E (2015) Exploring the use of an aerial robot to guide blind runners. ACM SIGACCESS Access Comput 112:3–7

    Article  Google Scholar 

  • Gautam D, Ha C (2013) Control of a quadrotor using a smart self-tuning fuzzy pid controller. Int J Adv Rob Syst 10(11):380

    Article  Google Scholar 

  • Gödel K (1932) Zum intuitionistischen aussagenkalkül. Anz Akad Wiss Wien 69:65–66

    MATH  Google Scholar 

  • Han H, Ikuta A (2007) Fuzzy controllers for a class of discrete-time nonlinear systems. Artifi Intell Rev 27(2):79–94

    Article  Google Scholar 

  • Hatamleh KS, Al-Shabi M, Al-Ghasem A, Asad AA (2015) Unmanned aerial vehicles parameter estimation using artificial neural networks and iterative bi-section shooting method. Appl Soft Comput 36:457–467

    Article  Google Scholar 

  • Herwitz S, Johnson L, Dunagan S, Higgins R, Sullivan D, Zheng J, Lobitz B, Leung J, Gallmeyer B, Aoyagi M (2004) Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput Electron Agric 44(1):49–61

    Article  Google Scholar 

  • Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning rbf (gap-rbf) networks. IEEE Trans Syst Man Cybern Part B (Cybernetics) 34(6):2284–2292

    Article  Google Scholar 

  • Huang GB, Saratchandran P, Sundararajan N (2005) A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation. IEEE Trans Neural Netw 16(1):57–67

    Article  Google Scholar 

  • Hwang CL, Jan C (2012) Fuzzy decentralized sliding-mode under-actuated trajectory-tracking control for quadrotor unmanned aerial vehicle. In: Fuzzy systems (Fuzz-IEEE), 2012 IEEE international conference on, IEEE, pp 1–10

  • Ilhan I, Karakose M (2013) Type-2 fuzzy based quadrotor control approach. In: Control conference (ASCC), 2013 9th Asian, IEEE, pp 1–6

  • Intelligence SD (2013) The global uav payload market 2012–2022. Strategic Defence Intelligence: White Papers

  • Isaacson RM, Fujita F (2006) Metacognitive knowledge monitoring and self-regulated learning: Academic success and reflections on learning. J Scholarsh Teach Learn 6(1):39–55

    Google Scholar 

  • Jang JS (1993) Anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Jaśkowski S (1936) Recherches sur le système de la logique intuitioniste. In: Internat. Congress Philos. Sci 6:58–61

  • Josyula DP, Vadali H, Donahue BJ, Hughes FC (2009) Modeling metacognition for learning in artificial systems. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World congress on, IEEE, pp 1419–1424

  • Juang CF (2002) A tsk-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans Fuzzy Syst 10(2):155–170

    Article  Google Scholar 

  • Juang CF, Chen CY (2013) Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability. IEEE Trans Cybern 43(6):1781–1795

    Article  Google Scholar 

  • Juang CF, Lin CT (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32

    Article  Google Scholar 

  • Juang CF, Lin CT (1999) A recurrent self-organizing neural fuzzy inference network. IEEE Trans Neural Netw 10(4):828–845

    Article  Google Scholar 

  • Juang CF, Tsao YW (2008) A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans Fuzzy Syst 16(6):1411–1424

    Article  Google Scholar 

  • Juang CF, Lin YY, Tu CC (2010) A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets Syst 161(19):2552–2568

    Article  MathSciNet  Google Scholar 

  • Karnik NN, Mendel JM (2001) Centroid of a type-2 fuzzy set. Inf Sci 132(1):195–220

    Article  MathSciNet  MATH  Google Scholar 

  • Kasabov NK, Song Q (2002) Denfis: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154

    Article  Google Scholar 

  • Kayacan E, Maslim R (2016) Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans Mechatron 22:339–348

    Article  Google Scholar 

  • Khebbache H, Tadjine M (2013) Robust fuzzy backstepping sliding mode controller for a quadrotor unmanned aerial vehicle. J Control Eng Appl Inf 15(2):3–11

    Google Scholar 

  • Koh LP, Wich SA (2012) Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop Conserv Sci 5(2):121–132

    Article  Google Scholar 

  • Kosko B (1992) Neural networks and fuzzy systems: a dynamic systems approach to machine intelligence. Englewood Cliffs, Prentice Hall

    MATH  Google Scholar 

  • Kroo I, Prinz F, Shantz M, Kunz P, Fay G, Cheng S, Fabian T, Partridge C (2000) The mesicopter: a miniature rotorcraft concept-phase II interim report. Stanford University, Stanford

    Google Scholar 

  • Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. i. IEEE Trans Syst Man Cybern 20(2):404–418

    Article  MathSciNet  MATH  Google Scholar 

  • Lee D, Kim HJ, Sastry S (2009) Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int J Control Autom Syst 7(3):419–428

    Article  Google Scholar 

  • Lee KU, Kim HS, Park JB, Choi YH (2012) Hovering control of a quadrotor. In: Control, automation and systems (ICCAS), 2012 12th international conference on, IEEE, pp 162–167

  • Lee M, Tarokh M, Cross M (2010) Fuzzy logic decision making for multi-robot security systems. Artifi Intell Rev 34(2):177–194

    Article  Google Scholar 

  • Leishman GJ (2006) Principles of helicopter aerodynamics. Cambridge university press, Cambridge

    Google Scholar 

  • Lemos A, Caminhas W, Gomide F (2013) Adaptive fault detection and diagnosis using an evolving fuzzy classifier. Inf Sci 220:64–85

    Article  Google Scholar 

  • Leng G, McGinnity TM, Prasad G (2005) An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network. Fuzzy Sets Syst 150(2):211–243

    Article  MathSciNet  MATH  Google Scholar 

  • Li D, Cheng X, Xu Z (2013) Gain adaptive sliding mode controller for flight attitude control of mav. Opt Precis Eng 21(5):1183–1191

    Article  Google Scholar 

  • Li J, Li Y (2011) Dynamic analysis and pid control for a quadrotor. In: Mechatronics and automation (ICMA), 2011 international conference on, IEEE, pp 573–578

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  • Lin YY, Chang JY, Lin CT (2013a) Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 24(2):310–321

    Article  Google Scholar 

  • Lin YY, Chang JY, Pal NR, Lin CT (2013b) A mutually recurrent interval type-2 neural fuzzy system (mrit2nfs) with self-evolving structure and parameters. IEEE Trans Fuzzy Syst 21(3):492–509

    Article  Google Scholar 

  • Lin YY, Chang JY, Lin CT (2014a) A tsk-type-based self-evolving compensatory interval type-2 fuzzy neural network (tscit2fnn) and its applications. IEEE Trans Ind Electron 61(1):447–459

    Article  Google Scholar 

  • Lin YY, Liao SH, Chang JY, Lin CT (2014b) Simplified interval type-2 fuzzy neural networks. IEEE Trans Neural Netw Learn Syst 25(5):959–969

    Article  Google Scholar 

  • Lughofer E (2012) Flexible evolving fuzzy inference systems from data streams (flexfis++). In: Learning in non-stationary environments, Springer, pp 205–245

  • Lughofer E, Cernuda C, Kindermann S, Pratama M (2015) Generalized smart evolving fuzzy systems. Evolv Syst 6(4):269–292

    Article  Google Scholar 

  • Lughofer ED (2008) FLEXFIS: a robust incremental learning approach for evolving takagi-sugeno fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–1410

    Article  Google Scholar 

  • Lukasiewicz J (1930) Philosophische bemerkungen zu mehrwertigen systemen des aussagenkalktils in comptes rendus des seances de la societe des sciences et des lettres de varsovie. classe

  • Łukaszewicz A (2009) Geometrical modelling of uav using parametric cax systems. In: the European micro air vehicle conference and competition

  • Ma J, Ji R (2016) Fuzzy pid for quadrotor space fixed-point position control. In: Instrumentation and measurement, computer, communication and control (IMCCC), 2016 sixth international conference on, IEEE, pp 721–726

  • MacLeod C, Maxwell GM (2001) Incremental evolution in anns: neural nets which grow. Artifi Intell Rev 16(3):201–224

    Article  MATH  Google Scholar 

  • Madani T, Benallegue A (2006) Backstepping control for a quadrotor helicopter. In: Intelligent robots and systems, 2006 IEEE/RSJ international conference on, IEEE, pp 3255–3260

  • Mamdani EH (1974) Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the institution of electrical engineers, IET vol 121 pp 1585–1588

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  • Mehranpour MR, Emamgholi O, Shahri AM, Farrokhi M (2013) A new fuzzy adaptive control for a quadrotor flying robot. In: Fuzzy systems (IFSC), 2013 13th Iranian conference on, IEEE, pp 1–5

  • Minh LD, Ha C (2010) Modeling and control of quadrotor mav using vision-based measurement. In: Strategic technology (IFOST), 2010 international forum on, IEEE, pp 70–75

  • Mirzaei M, Nia FS, Mohammadi H (2011) Applying adaptive fuzzy sliding mode control to an underactuated system. In: Control, instrumentation and automation (ICCIA), 2011 2nd international conference on, IEEE, pp 654–659

  • Mohammed F, Idries A, Mohamed N, Al-Jaroodi J, Jawhar I (2014) Uavs for smart cities: Opportunities and challenges. In: Unmanned aircraft systems (ICUAS), 2014 international conference on, IEEE, pp 267–273

  • Moraga C, Trillas E, Guadarrama S (2003) Multiple-valued logic and artificial intelligence fundamentals of fuzzy control revisited. Artifi Intell Rev 20(3):169–197

    Article  MATH  Google Scholar 

  • Mostafa SA, Ahmad MS, Mustapha A (2017) Adjustable autonomy: a systematic literature review. Artificial Intelligence Review pp 1–38

  • Naldi R, Pounds P, De Marco S, Marconi L (2015) Output tracking for quadrotor-based aerial manipulators. In: American control conference (ACC), 2015, IEEE, pp 1855–1860

  • Nam SK, Zhang RW (1997) Fuzzy multi-variable control for attitude stabilization of flexible spacecraft. In: Intelligent processing systems, 1997. ICIPS’97. 1997 IEEE international conference on, IEEE, vol 1, pp 257–261

  • Nelson TO (1990) Metamemory: a theoretical framework and new findings. Psychol Learn Mot 26:125–173

    Article  Google Scholar 

  • Niroumand FJ, Fakharian A, Seyedsajadi MS (2013) Fuzzy integral backstepping control approach in attitude stabilization of a quadrotor uav. In: Fuzzy systems (IFSC), 2013 13th Iranian conference on, IEEE, pp 1–6

  • Nonami K (2007) Prospect and recent research and development for civil use autonomous unmanned aircraft as uav and mav. J Syst Des Dyn 1(2):120–128

    Google Scholar 

  • Pedro JO, Kala PJ (2015) Nonlinear control of quadrotor uav using takagi-sugeno fuzzy logic technique. In: Control conference (ASCC), 2015 10th Asian, IEEE, pp 1–6

  • Pedro JO, Mathe C (2015) Nonlinear direct adaptive control of quadrotor uav using fuzzy logic technique. In: Control conference (ASCC), 2015 10th Asian, IEEE, pp 1–6

  • Ponce P, Molina A, Cayetano I, Gallardo J, Salcedo H, Rodriguez J (2015) Experimental fuzzy logic controller type 2 for a quadrotor optimized by anfis. IFAC-PapersOnLine 48(3):2435–2441

    Article  Google Scholar 

  • Ponce P, Molina A, Cayetano I, Gallardo J, Salcedo H, Rodriguez J, Carrera I (2016) Fuzzy logic sugeno controller type-2 for quadrotors based on anfis. In: Nature-inspired computing for control systems, Springer, pp 195–230

    Google Scholar 

  • Pounds P, Mahony R, Hynes P, Roberts JM (2002) Design of a four-rotor aerial robot. In: Proceedings of the 2002 Australasian conference on robotics and automation (ACRA 2002), Australian robotics and automation association, pp 145–150

  • Pratama M, Anavatti SG, Angelov PP, Lughofer E (2014a) Panfis: a novel incremental learning machine. IEEE Trans Neural Netw Learn Syst 25(1):55–68

    Article  Google Scholar 

  • Pratama M, Anavatti SG, Lughofer E (2014b) Genefis: toward an effective localist network. IEEE Trans Fuzzy Syst 22(3):547–562

    Article  Google Scholar 

  • Pratama M, Anavatti SG, Lu J (2015) Recurrent classifier based on an incremental metacognitive-based scaffolding algorithm. IEEE Trans Fuzzy Syst 23(6):2048–2066

    Article  Google Scholar 

  • Pratama M, Lu J, Anavatti S, Lughofer E, Lim CP (2016a) An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171:89–105

    Article  Google Scholar 

  • Pratama M, Lughofer E, Lu J, Er MJ, Anavatti S (2016b) Data driven modelling based on recurrent interval-valued metacognitive scaffolding fuzzy neural network

  • Pratama M, Ferdaus M, Anavatti SG, Garratt MA (2018) Palm: An incremental construction of hyperplanes for data stream regression. arXiv preprint arXiv:1805.04258

  • Rabhi A, Chadli M, Pegard C (2011) Robust fuzzy control for stabilization of a quadrotor. In: Advanced robotics (ICAR), 2011 15th international conference on, IEEE, pp 471–475

  • Raharja NM, Wahyunggoro O, Cahyadi AI, et al. (2015) Altitude control for quadrotor with mamdani fuzzy model. In: Science in information technology (ICSITech), 2015 international conference on, IEEE, pp 309–314

  • Rajab S, Sharma V (2017) A review on the applications of neuro-fuzzy systems in business. Artifi Intell Rev 49:1–30

    Google Scholar 

  • Razinkova A, Kang BJ, Cho HC, Jeon HT (2014) Constant altitude flight control for quadrotor uavs with dynamic feedforward compensation. Int J Fuzzy Log Intell Syst 14(1):26–33

    Article  Google Scholar 

  • Rinaldi F, Chiesa S, Quagliotti F (2013) Linear quadratic control for quadrotors UAVs dynamics and formation flight. J Intell Rob Syst 70:1–18

    Article  Google Scholar 

  • Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (safis) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9):1260–1275

    Article  MathSciNet  MATH  Google Scholar 

  • Roza A, Maggiore M (2012) Path following controller for a quadrotor helicopter. In: American control conference (ACC), 2012, IEEE, pp 4655–4660

  • Rudin K, Hua MD, Ducard G, Bouabdallah S (2011) A robust attitude controller and its application to quadrotor helicopters. IFAC Proc Vol 44(1):10,379–10,384

    Article  Google Scholar 

  • Runcharoon K, Srichatrapimuk V (2013) Sliding mode control of quadrotor. In: Technological advances in electrical, electronics and computer engineering (TAEECE), 2013 international conference on, IEEE, pp 552–557

  • Ruttner F (1966) The life and flight activity of drones. Bee World 47(3):93–100

    Article  Google Scholar 

  • Samad T, Bay JS, Godbole D (2007) Network-centric systems for military operations in urban terrain: the role of uavs. Proc IEEE 95(1):92–107

    Article  Google Scholar 

  • Sangyam T, Laohapiengsak P, Chongcharoen W, Nilkhamhang I (2010) Path tracking of uav using self-tuning pid controller based on fuzzy logic. In: SICE annual conference 2010, proceedings of, IEEE, pp 1265–1269

  • Santos M, Lopez V, Morata F (2010) Intelligent fuzzy controller of a quadrotor. In: Intelligent systems and knowledge engineering (ISKE), 2010 international conference on, IEEE, pp 141–146

  • Santoso F, Garratt MA, Anavatti SG (2015) Fuzzy logic-based self-tuning autopilots for trajectory tracking of a low-cost quadcopter: A comparative study. In: Advanced mechatronics, intelligent manufacture, and industrial automation (ICAMIMIA), 2015 international conference on, IEEE, pp 64–69

  • Santoso F, Garratt MA, Anavatti SG (2016) Adaptive neuro-fuzzy inference system identification for the dynamics of the AR. Drone quadcopter. In: Sustainable energy engineering and application (ICSEEA), 2016 international conference on, IEEE, pp 55–60

  • Sarris Z, Atlas S (2001) Survey of uav applications in civil markets. In: Proceedings of the 9th mediterranean conference on control and automation, pp 1–11

  • Savitha R, Suresh S, Sundararajan N (2012) Metacognitive learning in a fully complex-valued radial basis function neural network. Neural Comput 24(5):1297–1328

    Article  MathSciNet  Google Scholar 

  • Shim DH, Sastry S (2007) An evasive maneuvering algorithm for uavs in see-and-avoid situations. In: American control conference, 2007. ACC’07, IEEE, pp 3886–3891

  • Siyuan C, Ting Z, Yanchun C, Jianliang C, Junyi S, Jin L (2012) A research on quadrotor attitude control based on fuzzy-pi method. In: Control conference (CCC), 2012 31st Chinese, IEEE, pp 3548–3551

  • Sola HB, Fernandez J, Hagras H, Herrera F, Pagola M, Barrenechea E (2015) Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: toward a wider view on their relationship. IEEE Trans Fuzzy Syst 23(5):1876–1882

    Article  Google Scholar 

  • Sotheara S, Aso K, Aomi N, Shimamoto S (2014) Effective data gathering and energy efficient communication protocol in wireless sensor networks employing uav. In: Wireless communications and networking conference (WCNC), 2014 IEEE, pp 2342–2347

  • Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576

    Article  Google Scholar 

  • Steyn WH (1994) Fuzzy control for a non-linear mimo plant subject to control constraints. IEEE Trans Syst Man Cybern 24(10):1565–1571

    Article  Google Scholar 

  • Subramanian K, Suresh S, Sundararajan N (2013) A metacognitive neuro-fuzzy inference system (mcfis) for sequential classification problems. IEEE Trans Fuzzy Syst 21(6):1080–1095

    Article  Google Scholar 

  • Subramanian K, Das AK, Sundaram S, Ramasamy S (2014) A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm. Evolv Syst 5(4):219–230

    Article  Google Scholar 

  • Suresh S, Dong K, Kim H (2010) A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing 73(16):3012–3019

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1:116–132

    Article  MATH  Google Scholar 

  • Tang Y, Zhang H, Gong J (2015) Adaptive-fuzzy sliding-mode control for the attitude system of a quadrotor. In: Chinese automation congress (CAC), 2015, IEEE, pp 1075–1079

  • Taniguchi T, Eciolaza L, Sugeno M (2014) Quadrotor control using dynamic feedback linearization based on piecewise bilinear models. In: Computational intelligence in control and automation (CICA), 2014 IEEE symposium on, IEEE, pp 1–7

  • Tsukamoto Y (1979) An approach to fuzzy reasoning method. Adv Fuzzy Set Theory Appl 137:149

    Google Scholar 

  • Tung SW, Quek C, Guan C (2013) et2fis: an evolving type-2 neural fuzzy inference system. Inf Sci 220:124–148

    Article  Google Scholar 

  • Van Buijtenen WM, Schram G, Babuska R, Verbruggen HB (1998) Adaptive fuzzy control of satellite attitude by reinforcement learning. IEEE Trans Fuzzy Syst 6(2):185–194

    Article  Google Scholar 

  • Wahyunggoro O, Cahyadi AI, et al. (2016) Trajectory and altitude controls for autonomous hover of a quadrotor based on fuzzy algorithm. In: Information technology and electrical engineering (ICITEE), 2016 8th international conference on, IEEE, pp 1–6

  • Walker D, Postlethwaite I (1996) Advanced helicopter flight control using two-degree-of-freedom H (infinity) optimization. J Guid Control Dyn 19(2):461–468

    Article  MATH  Google Scholar 

  • Wang I, Dobrokhodov V, Kaminer I, Jones K (2005) On vision-based target tracking and range estimation for small uavs. In: AIAA guidance, navigation, and control conference and exhibit, p 6401

  • Wang Y, Chenxie Y, Tan J, Wang C, Wang Y, Zhang Y (2015) Fuzzy radial basis function neural network pid control system for a quadrotor uav based on particle swarm optimization. In: Information and automation, 2015 IEEE international conference on, IEEE, pp 2580–2585

  • Wang Y, Wang N, Liang X, Er MJ (2016) Fuzzy sliding mode tracking control of the quadrotor unmanned aerial vehicle with unknown disturbances. In: Guidance, navigation and control conference (CGNCC), 2016 IEEE Chinese, IEEE, pp 1132–1137

  • Waslander SL, Hoffmann GM, Jang JS, Tomlin CJ (2005) Multi-agent quadrotor testbed control design: Integral sliding mode vs. reinforcement learning. In: Intelligent robots and systems, 2005.(IROS 2005). 2005 IEEE/RSJ international conference on, IEEE, pp 3712–3717

  • Weibel R, Hansman RJ (2004) Safety considerations for operation of different classes of uavs in the nas. In: AIAA 3rd “Unmanned unlimited” technical conference, workshop and exhibit, p 6421

  • Wicaksono H, Gunawan Y, Kristanto C (2015) A fast geometric type2 fuzzy controller using barometric sensor for altitude stabilization quadrotor. In: Information technology and electrical engineering (ICITEE), 2015 7th international conference on, IEEE, pp 520–524

  • Xiong JJ, Zhang G (2016) Discrete-time sliding mode control for a quadrotor UAV. Opt-Int J Light Electron Opt 127(8):3718–3722

    Article  Google Scholar 

  • Xu M, He Y, Liang Y, Ding X (2015) Terminal guidance strategy for a hybrid thrust-tether lunar landing scheme. Adv Space Res 55(9):2280–2292

    Article  Google Scholar 

  • Xu R, Ozguner U (2006) Sliding mode control of a quadrotor helicopter. In: Decision and control, 2006 45th IEEE conference on, IEEE, pp 4957–4962

  • Yager RR, Filev DP (1994) Approximate clustering via the mountain method. IEEE Trans Syst Man Cybern 24(8):1279–1284

    Article  Google Scholar 

  • Yang Y, Yan Y (2016) Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerosp Sci Technol 54:208–217

    Article  Google Scholar 

  • Yanjun L, Tianqi X, Xiaodong Z (2016) A fuzzy self-tuning pd controller for a quadrotor: design and implementation. In: Control and decision conference (CCDC), 2016 Chinese, IEEE, pp 2448–2453

  • Young WR (1982) The epic of flight: the helicopters. Time-Life, Chicago

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 1:28–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-iii. Inf Sci 9(1):43–80

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing. Commun ACM 37(3):77–85

    Article  Google Scholar 

  • Za’in C, Pratama M, Lughofer E, Anavatti SG (2017) Evolving Type-2 Web News Mining. Appl Soft Comput 54:200–220

    Article  Google Scholar 

  • Zareb M, Ayad R, Nouibat W (2013) Fuzzy-pid hybrid control system to navigate an autonomous mini-quadrotor. In: Systems and control (ICSC), 2013 3rd international conference on, IEEE, pp 906–913

  • Zhang C, Zhou X, Zhao H, Dai A, Zhou H (2016) Three-dimensional fuzzy control of mini quadrotor uav trajectory tracking under impact of wind disturbance. In: Advanced mechatronic systems (ICAMechS), 2016 international conference on, IEEE, pp 372–377

  • Zhao JL, Zhang J (2016) Research on control method and controller design for micro quadrotor aircraft. In: Informative and cybernetics for computational social systems (ICCSS), 2016 3rd international conference on, IEEE, pp 317–320

  • Zuo Z (2013) Adaptive trajectory tracking control design with command filtered compensation for a quadrotor. J Vib Control 19(1):94–108

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Meftahul Ferdaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdaus, M.M., Anavatti, S.G., Pratama, M. et al. Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: a review. Artif Intell Rev 53, 257–290 (2020). https://doi.org/10.1007/s10462-018-9653-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9653-z

Keywords

Navigation