Skip to main content
Log in

A review of conceptual clustering algorithms

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Clustering is a fundamental technique in data mining and pattern recognition, which has been successfully applied in several contexts. However, most of the clustering algorithms developed so far have been focused only in organizing the collection of objects into a set of clusters, leaving the interpretation of those clusters to the user. Conceptual clustering algorithms, in addition to the list of objects belonging to the clusters, provide for each cluster one or several concepts, as an explanation of the clusters. In this work, we present an overview of the most influential algorithms reported in the field of conceptual clustering, highlighting their limitations or drawbacks. Additionally, we present a taxonomy of these methods as well as a qualitative comparison of these algorithms, regarding a set of characteristics desirable since a practical point of view, which may help in the selection of the most appropriate method for solving a problem at hand. Finally, some research lines that need to be further developed in the context of conceptual clustering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data (SIGMOD93), pp 207–216

  • Anaya-Sánchez H, Pons-Porrata A, Berlanga-Llavorí R (2008) A new document clustering algorithm for topic discovering and labeling. In: Proceedings of the 12th iberoamerican congress on pattern recognition (CIARP 2008), LNCS 5197, pp 161–168

  • Anaya-Sánchez H, Pons-Porrata A, Berlanga-Llavorí R (2010) A document clustering algorithm for discovering and describing topics. Pattern Recogn Lett 31(6):502–510

    Article  Google Scholar 

  • Ayaquica-Martínez IO, Martínez-Trinidad JF, Carrasco-Ochoa JA (2005) Conceptual K-means algorithm with similarity functions. In: Proceedings of the 9th Iberoamerican congress on pattern recognition (CIARP 2005), LNCS 3773, pp 368–376

  • Ayaquica-Martínez IO, Martínez-Trinidad JF, Carrasco-Ochoa JA (2006) Conceptual K-means algorithm based on complex features. In: Proceedings of the 10th Iberoamerican congress on pattern recognition (CIARP 2006), LNCS 4225, pp 491–501

  • Baghel R, Dhir R (2010) A frequent concepts based document clustering algorithm. Int J Comput Appl 4(5):6–12

    Google Scholar 

  • Beil F, Ester M, Xu X (2002) Frequent term-based text clustering. Proc FGML Workshop 37:436–442

    Google Scholar 

  • Béjar J, Cortés U (1992) LINNEO+: Herramienta Para la Adquisición de Conocimiento y Generación de Reglas de Clasificación en Dominios Poco Estructurados. In: Proceedings of the III Congreso Iberoamericano de Inteligencia Artificial (IBERAMIA 92), La Habana, Cuba, pp 471–781

  • Bellotto N, Benfold B, Harland H, Nagel H, Pirlo N, Reid I, Sommerlade E, Zhao C (2012) Cognitive visual tracking and camera control. Comput Vis Image Underst 116(3):457–471

    Article  Google Scholar 

  • Bhatia SK, Deogun JS (1998) Conceptual clustering in information retrieval. IEEE Trans Syst, Man, Cybern, Part B (Cybern) 28(3):427–436

    Article  Google Scholar 

  • Bhuyan HM, Bhattacharyya D, Kalita JK (2017) Network traffic anomaly detection and prevention: concepts, techniques, and tools. Springer International Publishing, chap Network Traffic Anomaly Detection Techniques and Systems, pp 115–169

  • Birkhoff G (1967) Lattice theory. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Biswas G, Weinberg J, Li C (1994) ITERATE: a conceptual clustering method for knowledge discovery in databases. In: Proceedings of innovative applications of artificial intelligence in the oil and gas industry, pp 111–139

  • Bouras C, Tsogkas V (2010) W-kmeans: clustering news articles using wordnet. In: Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part III, pp 379–388

  • Bournaud I, Ganascia JG (1997) Accounting for domain knowledge in the construction of a generalization space. In: Proceedings of the third international conference on conceptual structures (ICCS97), pp 446–459

  • Bournaud I, Courtine M, Zucker JD (2000) Abstractions for knowledge organization of relational descriptions. In: Proceedings of the 4th international symposium on abstraction, reformulation and approximation (SARA2000), pp 87–106

  • Burdick D, Calimlim M, Gehrke J (2001) Mafia: A Maximal frequent itemset algorithm for transactional database. In: Proceedings of the 17th international conference on data engineering, pp 443–452

  • Busygin S, Jacobsen G, Kramer E (2002) Double conjugated clustering applied to leukemia microarray data. In: Proceedings of the second SIAM international conference on data mining, workshop clustering high dimensional data

  • Califano A, Stolovitzky G, Tu Y (2000) Analysis of gene expression microarays for phenotype classification. In: Proceedings of the international computational molecular biology, pp 75–85

  • Carpineto C, Romano G (1993) Galois: an order-theoretic approach to conceptual clustering. In: Proceedings of the tenth international conference on machine learning, pp 33–40

  • Chein M, Mugnier ML (1992) Conceptual Graphs: fundamental notions. Revue d’Intelligence Artificielle 6(4):365–406

    Google Scholar 

  • Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent systems for molecular biology, pp 93–103

  • Chu WW, Chiang K, Hsu C, Yau H (1996) An error-based conceptual clustering method for providing approximate query answers. Commun ACM 39(12):216

    Article  Google Scholar 

  • Chun-Ling C, Tseng FS, Liang T (2010) Mining fuzzy frequent itemsets for hierarchical document clustering. Inf Process Manage 46(2):193–211

    Article  Google Scholar 

  • DAmato C, Staab S S, Fanizzi N, Exposito F (2010) Dl-link: a conceptual clustering algorithm for indexing description logics knowledge bases. Int J Semant Comput 4(4):453–486

    Article  MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc: Ser B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Duffy D, Quiroz A (1991) A permutation based algorithm for block clustering. J Classif 8:65–91

    Article  MathSciNet  Google Scholar 

  • Esmi E, Sussner P, Sandri S (2016) Tunable equivalence fuzzy associative memories. Fuzzy Sets Syst 292:242–260

    Article  MathSciNet  MATH  Google Scholar 

  • Fanizzi N, Amato C, Esposito F (2007) Evolutionary conceptual clustering of semantically annotated resources. In: Proceedings of the international conference on semantic computing (ICSC2007), pp 783–790

  • Feigenbaum EA (1961) The simulation of verbal learning behavior. In: Proceedings of the western joint IRE-AIEE-ACM computer conference, pp 121–132

  • Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172

    Google Scholar 

  • Fonseca NA, Santos-Costa V, Camacho R (2012) Conceptual clustering of multi-relational data. Proc ILP 2011:145–159

    MathSciNet  Google Scholar 

  • Fore N, Dong G (2012) Contrast data mining: concepts, algorithms and applications. Chapman and Hall/CRC, London, chap CPC: A Contrast Pattern Based Clustering Algorithm, pp 197–216

  • Funes A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2008) Hierarchical distance-based conceptual clustering. In: Proceedings of ECML PKDD 2008, LNAI 5212, pp 349–364

  • Fung B, Wangand K, Ester M (2003) Hierarchical document clustering using frequent itemsets. In: Proceedings of the SIAM international conference on data mining 2003

  • García-Serrano JR, Martínez-Trinidad JF (1999) Extension to K-means algorithm for the use of similarity functions. In: Proceedings of the third european conference on principles of data mining and knowledge discovery proceedings. Prague, Czech. Republic, pp 354–359

  • Gennari JH, Langley P, Fisher DH (1989) Models of incremental concept formation. Artif Intell 40(1–3):11–61

    Article  Google Scholar 

  • Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of gene microarray data. In: Proceedings of the national academy of sciences of the United States of America, pp 12,079–12,084

  • Godin R, Missaoui R, Alaoui H (1995) An approach to concept formation based on formal concept analysis. Comput Intell 11(2):246–267

    Article  Google Scholar 

  • Godoy D, Amandí A (2006) A conceptual clustering approach for user profiling in personal information agents. AI Commun 19(3):207–227

    MathSciNet  MATH  Google Scholar 

  • Grana M (2008) Lattice computing: lattice theory based and computational intelligence. In: Proceedings of Kosen workshop on mathematics, technology and education

  • Grana M, Chyzhyk D (2016) Image understanding applications of lattice autoassociative memories. IEEE Trans Neural Netw Learn Syst 27(9):1920–1932

    Article  MathSciNet  Google Scholar 

  • Gutiérrez-Rodríguez AE, Martínez Trinidad JF, García-Borroto M, Carrasco-Ochoa JA (2015a) Mining patterns for clustering on numerical datasets using unsupervised decision trees. Knowl-Based Syst 82:70–79

    Article  Google Scholar 

  • Gutiérrez-Rodríguez AE, Martínez Trinidad JF, García-Borroto M, Carrasco-Ochoa JA (2015b) Mining patterns for clustering using unsupervised decision trees. Intell Data Anal 19(6):1297–1310

    Article  Google Scholar 

  • Hadzikadic M, Yun DYY (1989) Concept formation by incremental conceptual clustering. In: Proceedings of the international joint conference artificial intelligence, pp 831–836

  • Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-ppattern tree approach. Data Min Knowl Disc 8(1):53–87

    Article  Google Scholar 

  • Han MM, Tatsumi S, Okumoto T (1997) Applying genetic algorithm to conceptual clustering. IEEJ Trans Electron, Inf Syst 117(C(8)):1140–1151

    Google Scholar 

  • Hanson SJ, Bauer M (1989) Conceptual clustering, categorization, and polymorphy. Mach Learn 3(4):343–372

    Google Scholar 

  • Hartigan J (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129

    Article  Google Scholar 

  • Herrera-Semenets V, Peréz-García O, Hernández-León R (2017) Classification rule-based models for malicious activity detection. Intell Data Anal 21(5):1141–1154

    Article  Google Scholar 

  • Hill DR (1968) A vector clustering technique. In: Samuelson (ed) Mechanized information storage, retrieval and dissemination, pp 501–508

  • Ho TB (1995) An approach to concept formation based on formal concept analysis. IEICE Trans Inf Syst 78(5):553–559

    Google Scholar 

  • Ho TB (1997) Incremental conceptual clustering in the framework of galois lattice. In: Proceedings of the first Asia-pacific conference on knowledge discovery and data mining, pp 49–64

  • Hotho A, Stumme G (2002) Conceptual clustering of text clusters. Proc FGML Workshop 37:37–45

    Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  • Jamshidi Y, Kaburlasos V (2014) gsainknn: a GSA optimized, lattice computing KNN classifier. Eng Appl Artif Intell 35:277–285

    Article  Google Scholar 

  • Kaburlasos V, Papakostas G (2015) Learning distributions of image features by interactive fuzzy lattice reasoning (FLR) in pattern recognition applications. IEEE Comput Intell Mag 10(3):42–51

    Article  Google Scholar 

  • Kaburlasos V, Petridis V (2000) Fuzzy lattice neurocomputing (fln) models. Neural Netw 13(10):1145–1170

    Article  Google Scholar 

  • Kaburlasos V, Moussiades L, Vakali A (2009) Fuzzy lattice reasoning (flr) type neural computation for weighted graph partitioning. Neurocomputing 72(10–12):2121–2133

    Article  Google Scholar 

  • Kaburlasos V, Papadakis S, Papakostas G (2013) Lattice computing extension of the FAM neural classifier for human facial expression recognition. IEEE Trans Neural Netw Learn Syst 24(10):1526–1538

    Article  Google Scholar 

  • Katz SM (1996) Distribution of content words and phrases in text and language modelling. Nat Lang Eng 2(1):15–59

    Article  Google Scholar 

  • Kilander F, Jansson CG (1993) COBBIT–a control procedure for COBWEB in the presence of concept drift. In: Proceedings of the European conference on machine learning, pp 244–261

  • Kiran GVR, Shankar R, Pudi V (2010) Frequent itemset based hierarchical document clustering using wikipedia as external knowledge. In: Proceedings of the 14th international conference on knowledge-based and intelligent information and engineering systems: Part II, pp 11–20

  • Krishna SM, Bhavani SD (2010) Performance evaluation of an efficient frequent item sets-based text clustering approach. Glob J Comput Sci Technol 10(11):60–68

    Google Scholar 

  • Kryszkiewicz M, Skonieczny L (2006) Hierarchical document clustering using frequent closed sets. Adv Soft Comput 35:489–498

    Article  Google Scholar 

  • Langley P, Thompson K, Iba W, Gennari JH, Allen JA (1990) An integrated cognitive architecture for autonomous agents. Tech. Rep. ARI Research Note 90-48, University of California

  • Lazzeroni L, Owen A (2000) Plaid models for gene expression data. Tech. rep., Stanford University

  • Lebowitz M (1986) Concept learning in a rich input domain: generalization-based memory. Mach Learn: An Artif Intell Approach 2:193–214

    Google Scholar 

  • Lee J, Rajauria P, Subodh KS (2007) A model-based conceptual clustering of moving objects in video surveillance. In: Proceedings of SPIE 6506, multimedia content access: algorithms and systems

  • Li Y, Chung SM, Holt JD (2008) Text document clustering based on frequent word meaning sequences. Data Knowl Eng 64(1):381–404

    Article  Google Scholar 

  • Liu J, Wang W (2003) OP-cluster: clustering by tendency in high dimensional space. In: Proceedings of the third IEEE international conference on data mining, pp 187–194

  • Liu X, he P, (2005) A study on text clustering algorithms based on frequent term sets. In: Proceedings of advanced data mining and applications, LNCS vol 3584, pp 347–354

  • Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45

    Article  Google Scholar 

  • Malik HH, Kender JR (2006) High quality, efficient hierarchical document clustering using closed interesting itemsets. In: Proceedings of the sixth international conference on data mining, pp 991–996

  • Malik HH, Kender JR, Fradkin D, Moerchen F (2010) Hierarchical document clustering using local patterns. Data Min Knowl Disc 21(1):153–185

    Article  MathSciNet  Google Scholar 

  • Martínez-Trinidad JF, Sánchez-Díaz G (2001) LC: a conceptual clustering algorithm. In: Proceedings of the second international workshop on machine learning and data mining in pattern recognition, pp 117–127

  • McKusick KB, Langley P (1991) Constraints on tree structure in concept formation. In: Proceedings of the 12th international joint conference on artificial intelligence, pp 810–816

  • McKusick KB, Thompson K (1990) COBWEB/3: a portable implementation. Tech. Rep. FIA-90-6-18-2, NASA Ames Research Center

  • Messai N, Devignes M, Napoli A, Smail-Tabbone M (2008) Many-valued concept lattices for conceptual clustering and information retrieval. In: Proceedings of the 18th European conference on artificial intelligence, pp 127–131

  • Michalski RS (1980) Knowledge acquisition through conceptual clustering: a theoretical framework and an algorithm for partitioning data into conjunctive concepts. A special issue on knowledge acquisition and induction. Int J Policy Anal Inf Syst 4(3):219–244

    Google Scholar 

  • Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396–410

    Article  Google Scholar 

  • Michel V, Gramfort A, Varoquaux G, Eger E, Keribin C, Thirion B (2012) A supervised clustering approach for FMRI-based inference of brain states. Pattern Recogn 45(6):2041–2049. https://doi.org/10.1016/j.patcog.2011.04.006

    Article  MATH  Google Scholar 

  • Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38(11):39–41

    Article  Google Scholar 

  • Mulani N, Pawar A, Mulay P, Dani A (2015) Variant of cobweb clustering for privacy preservation in cloud db querying. Proced Comput Sci 50:363–368

    Article  Google Scholar 

  • Munir MU, Javed MY, Khan SA (2012) A hierarchical K-means clustering based fingerprint quality classification. Neurocomputing 85:62–67. https://doi.org/10.1016/j.neucom.2012.01.002

    Article  Google Scholar 

  • Ng MK, Wong JC (2002) Clustering categorical data sets using tabu search techniques. Pattern Recogn 35(12):2783–2790

    Article  MATH  Google Scholar 

  • Nordhausen B (1986) Conceptual clustering using relational information. In: Proceedings of the AAAI-86, pp 505–512

  • Papadakis S, Kaburlasos V, Papakostas G (2014) Two fuzzy lattice reasoning (FLR) classifiers and their application for human facial expression recognition. J Mult-Val Logic Soft Comput 22(4–6):561–579

    MATH  Google Scholar 

  • Papakostas G, Savio A, Grana M, Kaburlasos V (2015) A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150:37–42

    Article  Google Scholar 

  • Pei J, Zhang X, Cho M, Wang H, Yu PS (2003) MaPle: a fast algorithm for maximal pattern-based clustering. In: Proceedings of the third IEEE international conference on data mining, ICDM 2003, pp 259–266

  • Perner P, Attig A (2010) Fuzzy conceptual clustering. In: Proceedings of the ICDM 2010, LNAI 6171, pp 71–85

  • Pfitzner D, Leibbrandt R, Powers D (2009) Characterization and evaluation of similarity measures for pairs of clusterings. Knowl Inf Syst 19(3):361–394

    Article  Google Scholar 

  • Pons-Porrata A, Berlanga-Llavorí R, Ruiz-Shulcloper J (2002a) On-line event and topic detection by using the compact sets clustering. J Intell Fuzzy Syst 12(3–4):185–194

    MATH  Google Scholar 

  • Pons-Porrata A, Martínez-Trinidad JF, Ruíz-Shulcloper J (2002b) RGC: a new conceptual clustering algorithm for mixed incomplete data sets. Math Comput Modell 36(11–13):1375–1385

    Article  MathSciNet  MATH  Google Scholar 

  • Pons-Porrata A, Berlanga-Llavorí R, Ruiz-Shulcloper J (2007) Topic discovery based on text mining techniques. Inf Process Manage 43(3):752–768

    Article  MATH  Google Scholar 

  • Quan TT, Hui SC, Cao TH (2004) A fuzzy fca-based approach to conceptual clustering for automatic generation of concept hierarchy on uncertainty data. Proc CLA 2004:1–12

    Google Scholar 

  • Ralambondrainy H (1995) A conceptual version of the K-means algorithm. Pattern Recogn Lett 16(11):1147–1157

    Article  Google Scholar 

  • Reich Y, Fenves SJ (1991) The formation and use of abstract concepts in design. In: Concept formation: knowledge and experience in unsupervised learning, pp 323–353

  • Robardet C, Feschet F (2001) Comparison of three objective functions for conceptual clustering. In: Proceedings of the 5th European conference on principles of data mining and knowledge discovery, pp 399–410

  • Romero-Zaliz RC, Rubio-Escudero C, Perren-Cobb J, Herrera F, Cordón O, Zwir I (2008) A multiobjective evolutionary conceptual clustering methodology for gene annotation within structural databases: a case of study on the gene ontology database. IEEE Trans Evol Comput 12(6):679–701

    Article  Google Scholar 

  • Sahoo N, Callan J, Krishnan R, Duncan G, Padman R (2006) Incremental hierarchical clustering of text documents. In: Proceedings of the 15th ACM international conference on information and knowledge management, pp 357–366

  • Scanlan J, Hartnett J, Williams R (2008) DynamicWEB: adapting to concept drift and object drift in COBWEB. In: Proceedings of the Australian conference on artificial intelligence 2008, LNAI 5360, pp 454–460

  • Seeman WD, Michalski RS (2006) The CLUSTER/3 system for goal-oriented conceptual clustering: method and preliminary results. In: Proceedings of the data mining and information engineering 2006 conference, pp 81–90

  • Segal E, Battle A, Koller D (2003) Decomposing gene expression into cellular processes. In: Proceedings of the pacific symposium on biocomputing, pp 89–100

  • Sen S, Adams J (2015) Real-time optimal selection of multirobot coalition formation algorithms using conceptual clustering. In: Workshops at the twenty-Ninth AAAI conference on artificial intelligence

  • Shi Z, Ester M (2003) Performance improvement for frequent term-based text clustering algorithm. Tech. rep., Simon Fraser University

  • Spanakis G, Siolas G, Stafylopatis A (2012) Exploiting wikipedia knowledge for conceptual hierarchical clustering of documents. Comput J 55(3):299–312

    Article  MATH  Google Scholar 

  • Stepp RE, Michalski RS (1986) Conceptual clustering: inventing goal oriented classifications of structured objects. Mach Learn: Artif Intell Approach II:471–498

    Google Scholar 

  • Talavera L, Béjar J (2001) Generality-based conceptual clustering with probabilistic concepts. IEEE Trans Pattern Anal Mach Intell 23(2):196–206

    Article  Google Scholar 

  • Talmon JL, Fonteijn H, Braspenning PJ (1993) An analysis of the WITT algorithm. Mach Learn 11(1):91–104

    Article  MATH  Google Scholar 

  • Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:136–144

    Article  Google Scholar 

  • Tang C, Zhang L, Zhang I, Ramanathan M (2001) Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: Proceedings of the second international symposium of bioinformatics and bioengineering, pp 41–48

  • Thompson K, Langley P (1991) Concept formation: knowledge and experience in unsupervised learning. Morgan Kaufmann, chap Concept Formation in Structured Domains, pp 127–161

  • Tibshirani R, Hastie T, Eisen M, Ross D, Botstein D, Brown P (1999) Clustering methods for the analysis of dna microarray data. Tech. rep., Dept. of Health Research and Policy, Dept. of Genetics, and Dept. of Biochemestry, Stanford Univ

  • Uddin J, Ghazali R, Deris MM, Naseem R, Shah H (2017) A survey on bug prioritization. Artif Intell Rev 47(2):145–180. https://doi.org/10.1007/s10462-016-9478-6

    Article  Google Scholar 

  • Velcin J, Ganascia JG (2007a) Default clustering with conceptual structures. J Data Semant VIII 4380:1–25

    Article  MATH  Google Scholar 

  • Velcin J, Ganascia JG (2007b) Topic extraction with AGAPE. In: Proceedings of the 3rd international conference on advanced data mining and applications, pp 377–388

  • Ventos V, Soldano H, Lamadon T (2004) Alpha galois lattices. In: Proceedings of the fourth ieee international conference on data mining, (ICDM04), pp 555–558

  • Wang H, Liu X (2011) Study on frequent term set-based hierarchical clustering algorithm. In: Proceedings of the eighth international conference on fuzzy systems and knowledge discovery (FSKD 2011), pp 1182–1186

  • Wang H, Pei J (2008) Clustering by pattern similarity. J Comput Sci Technol 23(4):481–496

    Article  MathSciNet  Google Scholar 

  • Wang J, Han J, Pei J (2003) CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proceedings of the international conference on knowledge discovery and data mining (KDD 2003), pp 236–245

  • Wang L, Tian L, Jia Y, Han W (2007) A hybrid algorithm for web document clustering based on frequent term sets and K-means. In: Advances in web and network technologies, and information management, pp 198–203

  • Wang TS, Lin HT, Wang P (2016) Weighted-spectral clustering algorithm for detecting community structures in complex networks. Artif Intell Rev. https://doi.org/10.1007/s10462-016-9488-4

  • Xu R (2014) Network intrusion detection data processing research based on concept clustering aoi algorithm. In: Applied mechanics and materials, Trans Tech Publ vol 644, pp 1162–1165

  • Yang J, Wang W, Wang H, Yu P (2003) Enhanced biclustering on expression data. In: Proceedings of the third IEEE conference on bioinformatics and bioengineering, pp 321–327

  • Yongheng W, Yan J, Shuqiang Y (2005) Parallel mining of top-K frequent items in very large text database. In: Proceedings of the 6th international conference on advances in web-age information management, pp 706–712

  • Yoo YP, Pettey CC, Yoo S (1996) A hybrid conceptual clustering system. In: Proceedings of the 1996 ACM 24th annual conference on computer science, pp 105–114

  • Yu H, Searsmith D, Li X, Han J (2004) Scalable construction of topic directory with nonparametric closed termset mining. In: Proceedings of the fourth ieee international conference on data mining, pp 563–566

  • Yuan G, Sun P, Zhao J, Li D, Wang C (2017) A review of moving object trajectory clustering algorithms. Artif Intell Rev 47(1):123–144. https://doi.org/10.1007/s10462-016-9477-7

    Article  Google Scholar 

  • Zhang W, Yoshida T, Tang X, Wanga Q (2010) Text clustering using frequent itemsets. Knowl-Based Syst 23(5):379–388

    Article  Google Scholar 

  • Zhao Y, Karypis G (2002) Evaluation of hierarchical clustering algorithms for document datasets. In: Proceedings of the international conference on information and knowledge management, pp 515–524

  • Zheng HT, Chen H, Gong SQ (2014) A frequent term-based multiple clustering approach for text documents. In: Proceedings of the 16th Asia-pacific web conference, pp 602–609

  • Zhuang L, Dai H (2004) A maximal frequent itemset approach for web document clustering. In: Proceedings of the fourth international conference on computer and information technology, pp 970–977

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airel Pérez-Suárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Suárez, A., Martínez-Trinidad, J.F. & Carrasco-Ochoa, J.A. A review of conceptual clustering algorithms. Artif Intell Rev 52, 1267–1296 (2019). https://doi.org/10.1007/s10462-018-9627-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9627-1

Keywords

Navigation