Artificial Intelligence Review

, Volume 52, Issue 2, pp 1267–1296 | Cite as

A review of conceptual clustering algorithms

  • Airel Pérez-SuárezEmail author
  • José F. Martínez-Trinidad
  • Jesús A. Carrasco-Ochoa


Clustering is a fundamental technique in data mining and pattern recognition, which has been successfully applied in several contexts. However, most of the clustering algorithms developed so far have been focused only in organizing the collection of objects into a set of clusters, leaving the interpretation of those clusters to the user. Conceptual clustering algorithms, in addition to the list of objects belonging to the clusters, provide for each cluster one or several concepts, as an explanation of the clusters. In this work, we present an overview of the most influential algorithms reported in the field of conceptual clustering, highlighting their limitations or drawbacks. Additionally, we present a taxonomy of these methods as well as a qualitative comparison of these algorithms, regarding a set of characteristics desirable since a practical point of view, which may help in the selection of the most appropriate method for solving a problem at hand. Finally, some research lines that need to be further developed in the context of conceptual clustering are discussed.


Data Mining Clustering Conceptual clustering Concept formation 


  1. Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data (SIGMOD93), pp 207–216Google Scholar
  2. Anaya-Sánchez H, Pons-Porrata A, Berlanga-Llavorí R (2008) A new document clustering algorithm for topic discovering and labeling. In: Proceedings of the 12th iberoamerican congress on pattern recognition (CIARP 2008), LNCS 5197, pp 161–168Google Scholar
  3. Anaya-Sánchez H, Pons-Porrata A, Berlanga-Llavorí R (2010) A document clustering algorithm for discovering and describing topics. Pattern Recogn Lett 31(6):502–510CrossRefGoogle Scholar
  4. Ayaquica-Martínez IO, Martínez-Trinidad JF, Carrasco-Ochoa JA (2005) Conceptual K-means algorithm with similarity functions. In: Proceedings of the 9th Iberoamerican congress on pattern recognition (CIARP 2005), LNCS 3773, pp 368–376Google Scholar
  5. Ayaquica-Martínez IO, Martínez-Trinidad JF, Carrasco-Ochoa JA (2006) Conceptual K-means algorithm based on complex features. In: Proceedings of the 10th Iberoamerican congress on pattern recognition (CIARP 2006), LNCS 4225, pp 491–501Google Scholar
  6. Baghel R, Dhir R (2010) A frequent concepts based document clustering algorithm. Int J Comput Appl 4(5):6–12Google Scholar
  7. Beil F, Ester M, Xu X (2002) Frequent term-based text clustering. Proc FGML Workshop 37:436–442Google Scholar
  8. Béjar J, Cortés U (1992) LINNEO+: Herramienta Para la Adquisición de Conocimiento y Generación de Reglas de Clasificación en Dominios Poco Estructurados. In: Proceedings of the III Congreso Iberoamericano de Inteligencia Artificial (IBERAMIA 92), La Habana, Cuba, pp 471–781Google Scholar
  9. Bellotto N, Benfold B, Harland H, Nagel H, Pirlo N, Reid I, Sommerlade E, Zhao C (2012) Cognitive visual tracking and camera control. Comput Vis Image Underst 116(3):457–471CrossRefGoogle Scholar
  10. Bhatia SK, Deogun JS (1998) Conceptual clustering in information retrieval. IEEE Trans Syst, Man, Cybern, Part B (Cybern) 28(3):427–436CrossRefGoogle Scholar
  11. Bhuyan HM, Bhattacharyya D, Kalita JK (2017) Network traffic anomaly detection and prevention: concepts, techniques, and tools. Springer International Publishing, chap Network Traffic Anomaly Detection Techniques and Systems, pp 115–169Google Scholar
  12. Birkhoff G (1967) Lattice theory. American Mathematical Society, ProvidencezbMATHGoogle Scholar
  13. Biswas G, Weinberg J, Li C (1994) ITERATE: a conceptual clustering method for knowledge discovery in databases. In: Proceedings of innovative applications of artificial intelligence in the oil and gas industry, pp 111–139Google Scholar
  14. Bouras C, Tsogkas V (2010) W-kmeans: clustering news articles using wordnet. In: Proceedings of the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part III, pp 379–388Google Scholar
  15. Bournaud I, Ganascia JG (1997) Accounting for domain knowledge in the construction of a generalization space. In: Proceedings of the third international conference on conceptual structures (ICCS97), pp 446–459Google Scholar
  16. Bournaud I, Courtine M, Zucker JD (2000) Abstractions for knowledge organization of relational descriptions. In: Proceedings of the 4th international symposium on abstraction, reformulation and approximation (SARA2000), pp 87–106Google Scholar
  17. Burdick D, Calimlim M, Gehrke J (2001) Mafia: A Maximal frequent itemset algorithm for transactional database. In: Proceedings of the 17th international conference on data engineering, pp 443–452Google Scholar
  18. Busygin S, Jacobsen G, Kramer E (2002) Double conjugated clustering applied to leukemia microarray data. In: Proceedings of the second SIAM international conference on data mining, workshop clustering high dimensional dataGoogle Scholar
  19. Califano A, Stolovitzky G, Tu Y (2000) Analysis of gene expression microarays for phenotype classification. In: Proceedings of the international computational molecular biology, pp 75–85Google Scholar
  20. Carpineto C, Romano G (1993) Galois: an order-theoretic approach to conceptual clustering. In: Proceedings of the tenth international conference on machine learning, pp 33–40Google Scholar
  21. Chein M, Mugnier ML (1992) Conceptual Graphs: fundamental notions. Revue d’Intelligence Artificielle 6(4):365–406Google Scholar
  22. Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent systems for molecular biology, pp 93–103Google Scholar
  23. Chu WW, Chiang K, Hsu C, Yau H (1996) An error-based conceptual clustering method for providing approximate query answers. Commun ACM 39(12):216CrossRefGoogle Scholar
  24. Chun-Ling C, Tseng FS, Liang T (2010) Mining fuzzy frequent itemsets for hierarchical document clustering. Inf Process Manage 46(2):193–211CrossRefGoogle Scholar
  25. DAmato C, Staab S S, Fanizzi N, Exposito F (2010) Dl-link: a conceptual clustering algorithm for indexing description logics knowledge bases. Int J Semant Comput 4(4):453–486zbMATHCrossRefGoogle Scholar
  26. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  27. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc: Ser B (Methodol) 39(1):1–38MathSciNetzbMATHGoogle Scholar
  28. Duffy D, Quiroz A (1991) A permutation based algorithm for block clustering. J Classif 8:65–91MathSciNetCrossRefGoogle Scholar
  29. Esmi E, Sussner P, Sandri S (2016) Tunable equivalence fuzzy associative memories. Fuzzy Sets Syst 292:242–260MathSciNetzbMATHCrossRefGoogle Scholar
  30. Fanizzi N, Amato C, Esposito F (2007) Evolutionary conceptual clustering of semantically annotated resources. In: Proceedings of the international conference on semantic computing (ICSC2007), pp 783–790Google Scholar
  31. Feigenbaum EA (1961) The simulation of verbal learning behavior. In: Proceedings of the western joint IRE-AIEE-ACM computer conference, pp 121–132Google Scholar
  32. Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172Google Scholar
  33. Fonseca NA, Santos-Costa V, Camacho R (2012) Conceptual clustering of multi-relational data. Proc ILP 2011:145–159MathSciNetGoogle Scholar
  34. Fore N, Dong G (2012) Contrast data mining: concepts, algorithms and applications. Chapman and Hall/CRC, London, chap CPC: A Contrast Pattern Based Clustering Algorithm, pp 197–216Google Scholar
  35. Funes A, Ferri C, Hernández-Orallo J, Ramírez-Quintana MJ (2008) Hierarchical distance-based conceptual clustering. In: Proceedings of ECML PKDD 2008, LNAI 5212, pp 349–364Google Scholar
  36. Fung B, Wangand K, Ester M (2003) Hierarchical document clustering using frequent itemsets. In: Proceedings of the SIAM international conference on data mining 2003Google Scholar
  37. García-Serrano JR, Martínez-Trinidad JF (1999) Extension to K-means algorithm for the use of similarity functions. In: Proceedings of the third european conference on principles of data mining and knowledge discovery proceedings. Prague, Czech. Republic, pp 354–359Google Scholar
  38. Gennari JH, Langley P, Fisher DH (1989) Models of incremental concept formation. Artif Intell 40(1–3):11–61CrossRefGoogle Scholar
  39. Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of gene microarray data. In: Proceedings of the national academy of sciences of the United States of America, pp 12,079–12,084Google Scholar
  40. Godin R, Missaoui R, Alaoui H (1995) An approach to concept formation based on formal concept analysis. Comput Intell 11(2):246–267CrossRefGoogle Scholar
  41. Godoy D, Amandí A (2006) A conceptual clustering approach for user profiling in personal information agents. AI Commun 19(3):207–227MathSciNetzbMATHGoogle Scholar
  42. Grana M (2008) Lattice computing: lattice theory based and computational intelligence. In: Proceedings of Kosen workshop on mathematics, technology and educationGoogle Scholar
  43. Grana M, Chyzhyk D (2016) Image understanding applications of lattice autoassociative memories. IEEE Trans Neural Netw Learn Syst 27(9):1920–1932MathSciNetCrossRefGoogle Scholar
  44. Gutiérrez-Rodríguez AE, Martínez Trinidad JF, García-Borroto M, Carrasco-Ochoa JA (2015a) Mining patterns for clustering on numerical datasets using unsupervised decision trees. Knowl-Based Syst 82:70–79CrossRefGoogle Scholar
  45. Gutiérrez-Rodríguez AE, Martínez Trinidad JF, García-Borroto M, Carrasco-Ochoa JA (2015b) Mining patterns for clustering using unsupervised decision trees. Intell Data Anal 19(6):1297–1310CrossRefGoogle Scholar
  46. Hadzikadic M, Yun DYY (1989) Concept formation by incremental conceptual clustering. In: Proceedings of the international joint conference artificial intelligence, pp 831–836Google Scholar
  47. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-ppattern tree approach. Data Min Knowl Disc 8(1):53–87CrossRefGoogle Scholar
  48. Han MM, Tatsumi S, Okumoto T (1997) Applying genetic algorithm to conceptual clustering. IEEJ Trans Electron, Inf Syst 117(C(8)):1140–1151Google Scholar
  49. Hanson SJ, Bauer M (1989) Conceptual clustering, categorization, and polymorphy. Mach Learn 3(4):343–372Google Scholar
  50. Hartigan J (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129CrossRefGoogle Scholar
  51. Herrera-Semenets V, Peréz-García O, Hernández-León R (2017) Classification rule-based models for malicious activity detection. Intell Data Anal 21(5):1141–1154CrossRefGoogle Scholar
  52. Hill DR (1968) A vector clustering technique. In: Samuelson (ed) Mechanized information storage, retrieval and dissemination, pp 501–508Google Scholar
  53. Ho TB (1995) An approach to concept formation based on formal concept analysis. IEICE Trans Inf Syst 78(5):553–559Google Scholar
  54. Ho TB (1997) Incremental conceptual clustering in the framework of galois lattice. In: Proceedings of the first Asia-pacific conference on knowledge discovery and data mining, pp 49–64Google Scholar
  55. Hotho A, Stumme G (2002) Conceptual clustering of text clusters. Proc FGML Workshop 37:37–45Google Scholar
  56. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  57. Jamshidi Y, Kaburlasos V (2014) gsainknn: a GSA optimized, lattice computing KNN classifier. Eng Appl Artif Intell 35:277–285CrossRefGoogle Scholar
  58. Kaburlasos V, Papakostas G (2015) Learning distributions of image features by interactive fuzzy lattice reasoning (FLR) in pattern recognition applications. IEEE Comput Intell Mag 10(3):42–51CrossRefGoogle Scholar
  59. Kaburlasos V, Petridis V (2000) Fuzzy lattice neurocomputing (fln) models. Neural Netw 13(10):1145–1170CrossRefGoogle Scholar
  60. Kaburlasos V, Moussiades L, Vakali A (2009) Fuzzy lattice reasoning (flr) type neural computation for weighted graph partitioning. Neurocomputing 72(10–12):2121–2133CrossRefGoogle Scholar
  61. Kaburlasos V, Papadakis S, Papakostas G (2013) Lattice computing extension of the FAM neural classifier for human facial expression recognition. IEEE Trans Neural Netw Learn Syst 24(10):1526–1538CrossRefGoogle Scholar
  62. Katz SM (1996) Distribution of content words and phrases in text and language modelling. Nat Lang Eng 2(1):15–59CrossRefGoogle Scholar
  63. Kilander F, Jansson CG (1993) COBBIT–a control procedure for COBWEB in the presence of concept drift. In: Proceedings of the European conference on machine learning, pp 244–261Google Scholar
  64. Kiran GVR, Shankar R, Pudi V (2010) Frequent itemset based hierarchical document clustering using wikipedia as external knowledge. In: Proceedings of the 14th international conference on knowledge-based and intelligent information and engineering systems: Part II, pp 11–20Google Scholar
  65. Krishna SM, Bhavani SD (2010) Performance evaluation of an efficient frequent item sets-based text clustering approach. Glob J Comput Sci Technol 10(11):60–68Google Scholar
  66. Kryszkiewicz M, Skonieczny L (2006) Hierarchical document clustering using frequent closed sets. Adv Soft Comput 35:489–498CrossRefGoogle Scholar
  67. Langley P, Thompson K, Iba W, Gennari JH, Allen JA (1990) An integrated cognitive architecture for autonomous agents. Tech. Rep. ARI Research Note 90-48, University of CaliforniaGoogle Scholar
  68. Lazzeroni L, Owen A (2000) Plaid models for gene expression data. Tech. rep., Stanford UniversityGoogle Scholar
  69. Lebowitz M (1986) Concept learning in a rich input domain: generalization-based memory. Mach Learn: An Artif Intell Approach 2:193–214Google Scholar
  70. Lee J, Rajauria P, Subodh KS (2007) A model-based conceptual clustering of moving objects in video surveillance. In: Proceedings of SPIE 6506, multimedia content access: algorithms and systemsGoogle Scholar
  71. Li Y, Chung SM, Holt JD (2008) Text document clustering based on frequent word meaning sequences. Data Knowl Eng 64(1):381–404CrossRefGoogle Scholar
  72. Liu J, Wang W (2003) OP-cluster: clustering by tendency in high dimensional space. In: Proceedings of the third IEEE international conference on data mining, pp 187–194Google Scholar
  73. Liu X, he P, (2005) A study on text clustering algorithms based on frequent term sets. In: Proceedings of advanced data mining and applications, LNCS vol 3584, pp 347–354Google Scholar
  74. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1(1):24–45CrossRefGoogle Scholar
  75. Malik HH, Kender JR (2006) High quality, efficient hierarchical document clustering using closed interesting itemsets. In: Proceedings of the sixth international conference on data mining, pp 991–996Google Scholar
  76. Malik HH, Kender JR, Fradkin D, Moerchen F (2010) Hierarchical document clustering using local patterns. Data Min Knowl Disc 21(1):153–185MathSciNetCrossRefGoogle Scholar
  77. Martínez-Trinidad JF, Sánchez-Díaz G (2001) LC: a conceptual clustering algorithm. In: Proceedings of the second international workshop on machine learning and data mining in pattern recognition, pp 117–127Google Scholar
  78. McKusick KB, Langley P (1991) Constraints on tree structure in concept formation. In: Proceedings of the 12th international joint conference on artificial intelligence, pp 810–816Google Scholar
  79. McKusick KB, Thompson K (1990) COBWEB/3: a portable implementation. Tech. Rep. FIA-90-6-18-2, NASA Ames Research CenterGoogle Scholar
  80. Messai N, Devignes M, Napoli A, Smail-Tabbone M (2008) Many-valued concept lattices for conceptual clustering and information retrieval. In: Proceedings of the 18th European conference on artificial intelligence, pp 127–131Google Scholar
  81. Michalski RS (1980) Knowledge acquisition through conceptual clustering: a theoretical framework and an algorithm for partitioning data into conjunctive concepts. A special issue on knowledge acquisition and induction. Int J Policy Anal Inf Syst 4(3):219–244Google Scholar
  82. Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396–410CrossRefGoogle Scholar
  83. Michel V, Gramfort A, Varoquaux G, Eger E, Keribin C, Thirion B (2012) A supervised clustering approach for FMRI-based inference of brain states. Pattern Recogn 45(6):2041–2049. zbMATHCrossRefGoogle Scholar
  84. Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38(11):39–41CrossRefGoogle Scholar
  85. Mulani N, Pawar A, Mulay P, Dani A (2015) Variant of cobweb clustering for privacy preservation in cloud db querying. Proced Comput Sci 50:363–368CrossRefGoogle Scholar
  86. Munir MU, Javed MY, Khan SA (2012) A hierarchical K-means clustering based fingerprint quality classification. Neurocomputing 85:62–67. CrossRefGoogle Scholar
  87. Ng MK, Wong JC (2002) Clustering categorical data sets using tabu search techniques. Pattern Recogn 35(12):2783–2790zbMATHCrossRefGoogle Scholar
  88. Nordhausen B (1986) Conceptual clustering using relational information. In: Proceedings of the AAAI-86, pp 505–512Google Scholar
  89. Papadakis S, Kaburlasos V, Papakostas G (2014) Two fuzzy lattice reasoning (FLR) classifiers and their application for human facial expression recognition. J Mult-Val Logic Soft Comput 22(4–6):561–579zbMATHGoogle Scholar
  90. Papakostas G, Savio A, Grana M, Kaburlasos V (2015) A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150:37–42CrossRefGoogle Scholar
  91. Pei J, Zhang X, Cho M, Wang H, Yu PS (2003) MaPle: a fast algorithm for maximal pattern-based clustering. In: Proceedings of the third IEEE international conference on data mining, ICDM 2003, pp 259–266Google Scholar
  92. Perner P, Attig A (2010) Fuzzy conceptual clustering. In: Proceedings of the ICDM 2010, LNAI 6171, pp 71–85Google Scholar
  93. Pfitzner D, Leibbrandt R, Powers D (2009) Characterization and evaluation of similarity measures for pairs of clusterings. Knowl Inf Syst 19(3):361–394CrossRefGoogle Scholar
  94. Pons-Porrata A, Berlanga-Llavorí R, Ruiz-Shulcloper J (2002a) On-line event and topic detection by using the compact sets clustering. J Intell Fuzzy Syst 12(3–4):185–194zbMATHGoogle Scholar
  95. Pons-Porrata A, Martínez-Trinidad JF, Ruíz-Shulcloper J (2002b) RGC: a new conceptual clustering algorithm for mixed incomplete data sets. Math Comput Modell 36(11–13):1375–1385MathSciNetzbMATHCrossRefGoogle Scholar
  96. Pons-Porrata A, Berlanga-Llavorí R, Ruiz-Shulcloper J (2007) Topic discovery based on text mining techniques. Inf Process Manage 43(3):752–768zbMATHCrossRefGoogle Scholar
  97. Quan TT, Hui SC, Cao TH (2004) A fuzzy fca-based approach to conceptual clustering for automatic generation of concept hierarchy on uncertainty data. Proc CLA 2004:1–12Google Scholar
  98. Ralambondrainy H (1995) A conceptual version of the K-means algorithm. Pattern Recogn Lett 16(11):1147–1157CrossRefGoogle Scholar
  99. Reich Y, Fenves SJ (1991) The formation and use of abstract concepts in design. In: Concept formation: knowledge and experience in unsupervised learning, pp 323–353Google Scholar
  100. Robardet C, Feschet F (2001) Comparison of three objective functions for conceptual clustering. In: Proceedings of the 5th European conference on principles of data mining and knowledge discovery, pp 399–410Google Scholar
  101. Romero-Zaliz RC, Rubio-Escudero C, Perren-Cobb J, Herrera F, Cordón O, Zwir I (2008) A multiobjective evolutionary conceptual clustering methodology for gene annotation within structural databases: a case of study on the gene ontology database. IEEE Trans Evol Comput 12(6):679–701CrossRefGoogle Scholar
  102. Sahoo N, Callan J, Krishnan R, Duncan G, Padman R (2006) Incremental hierarchical clustering of text documents. In: Proceedings of the 15th ACM international conference on information and knowledge management, pp 357–366Google Scholar
  103. Scanlan J, Hartnett J, Williams R (2008) DynamicWEB: adapting to concept drift and object drift in COBWEB. In: Proceedings of the Australian conference on artificial intelligence 2008, LNAI 5360, pp 454–460Google Scholar
  104. Seeman WD, Michalski RS (2006) The CLUSTER/3 system for goal-oriented conceptual clustering: method and preliminary results. In: Proceedings of the data mining and information engineering 2006 conference, pp 81–90Google Scholar
  105. Segal E, Battle A, Koller D (2003) Decomposing gene expression into cellular processes. In: Proceedings of the pacific symposium on biocomputing, pp 89–100Google Scholar
  106. Sen S, Adams J (2015) Real-time optimal selection of multirobot coalition formation algorithms using conceptual clustering. In: Workshops at the twenty-Ninth AAAI conference on artificial intelligenceGoogle Scholar
  107. Shi Z, Ester M (2003) Performance improvement for frequent term-based text clustering algorithm. Tech. rep., Simon Fraser UniversityGoogle Scholar
  108. Spanakis G, Siolas G, Stafylopatis A (2012) Exploiting wikipedia knowledge for conceptual hierarchical clustering of documents. Comput J 55(3):299–312zbMATHCrossRefGoogle Scholar
  109. Stepp RE, Michalski RS (1986) Conceptual clustering: inventing goal oriented classifications of structured objects. Mach Learn: Artif Intell Approach II:471–498Google Scholar
  110. Talavera L, Béjar J (2001) Generality-based conceptual clustering with probabilistic concepts. IEEE Trans Pattern Anal Mach Intell 23(2):196–206CrossRefGoogle Scholar
  111. Talmon JL, Fonteijn H, Braspenning PJ (1993) An analysis of the WITT algorithm. Mach Learn 11(1):91–104zbMATHCrossRefGoogle Scholar
  112. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:136–144CrossRefGoogle Scholar
  113. Tang C, Zhang L, Zhang I, Ramanathan M (2001) Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: Proceedings of the second international symposium of bioinformatics and bioengineering, pp 41–48Google Scholar
  114. Thompson K, Langley P (1991) Concept formation: knowledge and experience in unsupervised learning. Morgan Kaufmann, chap Concept Formation in Structured Domains, pp 127–161Google Scholar
  115. Tibshirani R, Hastie T, Eisen M, Ross D, Botstein D, Brown P (1999) Clustering methods for the analysis of dna microarray data. Tech. rep., Dept. of Health Research and Policy, Dept. of Genetics, and Dept. of Biochemestry, Stanford UnivGoogle Scholar
  116. Uddin J, Ghazali R, Deris MM, Naseem R, Shah H (2017) A survey on bug prioritization. Artif Intell Rev 47(2):145–180. CrossRefGoogle Scholar
  117. Velcin J, Ganascia JG (2007a) Default clustering with conceptual structures. J Data Semant VIII 4380:1–25zbMATHCrossRefGoogle Scholar
  118. Velcin J, Ganascia JG (2007b) Topic extraction with AGAPE. In: Proceedings of the 3rd international conference on advanced data mining and applications, pp 377–388Google Scholar
  119. Ventos V, Soldano H, Lamadon T (2004) Alpha galois lattices. In: Proceedings of the fourth ieee international conference on data mining, (ICDM04), pp 555–558Google Scholar
  120. Wang H, Liu X (2011) Study on frequent term set-based hierarchical clustering algorithm. In: Proceedings of the eighth international conference on fuzzy systems and knowledge discovery (FSKD 2011), pp 1182–1186Google Scholar
  121. Wang H, Pei J (2008) Clustering by pattern similarity. J Comput Sci Technol 23(4):481–496MathSciNetCrossRefGoogle Scholar
  122. Wang J, Han J, Pei J (2003) CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proceedings of the international conference on knowledge discovery and data mining (KDD 2003), pp 236–245Google Scholar
  123. Wang L, Tian L, Jia Y, Han W (2007) A hybrid algorithm for web document clustering based on frequent term sets and K-means. In: Advances in web and network technologies, and information management, pp 198–203Google Scholar
  124. Wang TS, Lin HT, Wang P (2016) Weighted-spectral clustering algorithm for detecting community structures in complex networks. Artif Intell Rev.
  125. Xu R (2014) Network intrusion detection data processing research based on concept clustering aoi algorithm. In: Applied mechanics and materials, Trans Tech Publ vol 644, pp 1162–1165Google Scholar
  126. Yang J, Wang W, Wang H, Yu P (2003) Enhanced biclustering on expression data. In: Proceedings of the third IEEE conference on bioinformatics and bioengineering, pp 321–327Google Scholar
  127. Yongheng W, Yan J, Shuqiang Y (2005) Parallel mining of top-K frequent items in very large text database. In: Proceedings of the 6th international conference on advances in web-age information management, pp 706–712Google Scholar
  128. Yoo YP, Pettey CC, Yoo S (1996) A hybrid conceptual clustering system. In: Proceedings of the 1996 ACM 24th annual conference on computer science, pp 105–114Google Scholar
  129. Yu H, Searsmith D, Li X, Han J (2004) Scalable construction of topic directory with nonparametric closed termset mining. In: Proceedings of the fourth ieee international conference on data mining, pp 563–566Google Scholar
  130. Yuan G, Sun P, Zhao J, Li D, Wang C (2017) A review of moving object trajectory clustering algorithms. Artif Intell Rev 47(1):123–144. CrossRefGoogle Scholar
  131. Zhang W, Yoshida T, Tang X, Wanga Q (2010) Text clustering using frequent itemsets. Knowl-Based Syst 23(5):379–388CrossRefGoogle Scholar
  132. Zhao Y, Karypis G (2002) Evaluation of hierarchical clustering algorithms for document datasets. In: Proceedings of the international conference on information and knowledge management, pp 515–524Google Scholar
  133. Zheng HT, Chen H, Gong SQ (2014) A frequent term-based multiple clustering approach for text documents. In: Proceedings of the 16th Asia-pacific web conference, pp 602–609Google Scholar
  134. Zhuang L, Dai H (2004) A maximal frequent itemset approach for web document clustering. In: Proceedings of the fourth international conference on computer and information technology, pp 970–977Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Airel Pérez-Suárez
    • 1
    Email author
  • José F. Martínez-Trinidad
    • 2
  • Jesús A. Carrasco-Ochoa
    • 2
  1. 1.Advanced Technologies Application Center (CENATAV)HavanaCuba
  2. 2.National Institute of Astrophysics Optics and Electronics (INAOE)PueblaMexico

Personalised recommendations