Advertisement

Flower pollination algorithm: a comprehensive review

  • Mohamed Abdel-Basset
  • Laila A. Shawky
Article

Abstract

Flower pollination algorithm (FPA) is a computational intelligence metaheuristic that takes its metaphor from flowers proliferation role in plants. This paper provides a comprehensive review of all issues related to FPA: biological inspiration, fundamentals, previous studies and comparisons, implementation, variants, hybrids, and applications. Besides, it makes a comparison between FPA and six different metaheuristics such as genetic algorithm, cuckoo search, grasshopper optimization algorithm, and others on solving a constrained engineering optimization problem . The experimental results are statistically analyzed with non-parametric Friedman test which indicates that FPA is superior more than other competitors in solving the given problem.

Keywords

Flower pollination algorithm Metaheuristic Cuckoo search Genetic algorithm Optimization 

References

  1. Abdelaziz AY, Ali ES (2015) Static VAR compensator damping controller design based on flower pollination algorithm for a multi-machine power system. Electric Power Compon Syst 43(11):1268–1277CrossRefGoogle Scholar
  2. Abdelaziz AY, Ali ES, Elazim SA (2016a) Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101:506–518CrossRefGoogle Scholar
  3. Abdelaziz AY, Ali ES, Elazim SA (2016b) Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int J Electr Power Energy Syst 78:207–214CrossRefGoogle Scholar
  4. Abdelaziz AY, Ali ES, Elazim SA (2016c) Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index. Eng Sci Technol Int J 19(1):610–618CrossRefGoogle Scholar
  5. Abdel-Baset M, Hezam IM (2015a) An improved flower pollination algorithm for ratios optimization problems. Appl Math Inf Sci Lett Int J 3(2):83–91Google Scholar
  6. Abdel-Baset M, Hezam IM (2015b) An effective hybrid flower pollination and genetic algorithm for constrained optimization problems. Adv Eng Technol Appl Int J 4:27Google Scholar
  7. Abdel-Baset M, Hezam I (2016) A hybrid flower pollination algorithm for engineering optimization problems. Int J Comput Appl 140(12):10–23Google Scholar
  8. Abdel-Raouf O, Abdel-Baset M (2014) A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int J Appl Oper Res Open Access J 4(2):1–13Google Scholar
  9. Abdel-Raouf O, Abdel-Baset M, El-Henawy I (2014a) An improved flower pollination algorithm with chaos. Int J Educ Managt Eng 4(2):1–8CrossRefGoogle Scholar
  10. Abdel-Raouf O, El-Henawy I, Abdel-Baset M (2014b) A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles. Int J Mod Educ Comput Sci 6(3):38CrossRefGoogle Scholar
  11. Agarwal P, Mehta S (2016) Enhanced flower pollination algorithm on data clustering. Int J Comput Appl 38(2–3):144–155Google Scholar
  12. Alam DF, Yousri DA, Eteiba MB (2015) Flower pollination algorithm based solar PV parameter estimation. Energy Convers Manag 101:410–422CrossRefGoogle Scholar
  13. Alshamlan HM, Badr GH, Alohali YA (2015) Genetic bee colony (GBC) algorithm: a new gene selection method for microarray cancer classification. Comput Biol Chem 56:49–60CrossRefGoogle Scholar
  14. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New YorkGoogle Scholar
  15. Azis MF, Ryanta A, Putra DFU, Fenno O (2015) Dynamic economic dispatch considering emission using multi-objective flower pollination algorithm. In: ASEAN/Asian academic society international conference proceeding seriesGoogle Scholar
  16. Bairwa SK, Kumar P, Baranwal AK (2016) Enhancement of radiation pattern for linear antenna array using flower pollination algorithm. In: Electrical power and energy systems (ICEPES), international conference. IEEE, pp 1–4Google Scholar
  17. Banerjee S, Chattopadhyay S (2016) Equalizer optimization using flower pollination algorithm. In: Power electronics, intelligent control and energy systems (ICPEICES), IEEE international conference. IEEE, pp 1–5‏Google Scholar
  18. Bazant MZ (2005) 18.366 Random walks and diffusion. Springer, New YorkGoogle Scholar
  19. Bekdaş G, Nigdeli SM, Sayin B (2016) Constraint factor in optimization of truss structures via flower pollination algorithm. In: 14th international conference ofnumerical analysis and applied mathematics, Rhodes, Greece, pp 19–25Google Scholar
  20. Bekdaş G, Nigdeli SM, Yang XS (2015a) Sizing optimization of truss structures using flower pollination algorithm. Appl Soft Comput 37:322–331CrossRefGoogle Scholar
  21. Bekdaş G, Nigdeli SM, Yang XS (2015b) Truss structure optimization using flower pollination algorithm. In: 9th European solid mechanics conference (ESMC 2015), Madrid, SpainGoogle Scholar
  22. Bekdaş G, Nigdeli SM, Yang XS (2017a) Size optimization of truss structures employing flower pollination algorithm without grouping structural members. Int J Theor Appl Mech 1:269–273Google Scholar
  23. Bekdaş G, Nigdeli SM, Yang XS (2017b) Metaheuristic based optimization for tuned mass dampers using frequency domain responses. In: Del Ser J (ed) Harmony search algorithm. ICHSA 2017. Advances in intelligent systems and computing, vol 514. Springer, SingaporeGoogle Scholar
  24. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599MATHCrossRefGoogle Scholar
  25. Benkercha R, Moulahoum S, Colak I, Taghezouit B (2016) PV module parameters extraction with maximum power point estimation based on flower pollination algorithm. In: Power electronics and motion control conference (PEMC), 2016 IEEE international. IEEE, pp 442–449Google Scholar
  26. Bensouyad M, Saidouni DE (2015) A hybrid discrete flower pollination algorithm for graph coloring problem. In Proceedings of the the international conference on engineering & MIS 2015. ACM, p 22Google Scholar
  27. Bhatia NK, Kumar V, Rana KPS, Gupta P, Mishra P (2016) Development of a flower pollination algorithm toolkit in LabVIEW™. In: Computing for sustainable global development (INDIACom), 2016 3rd international conference. IEEE, pp 309–314Google Scholar
  28. Bibiks K, Li JP, Hu F (2015) Discrete flower pollination algorithm for resource constrained project scheduling problem. Int J Comput Sci Inf Secur 13(7):8Google Scholar
  29. Binh HTT, Hanh NT, Dey N (2016) Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2823-5 Google Scholar
  30. Biswas S, Kundu S, Das S, Vasilakos AV (2013) Teaching and learning best differential evoltuion with self adaptation for real parameter optimization. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 1115–1122Google Scholar
  31. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308CrossRefGoogle Scholar
  32. Blum C, Roli A (2008) Hybrid metaheuristics: an introduction. In: Hybrid metaheuristics. Springer, Berlin, pp 1–30Google Scholar
  33. Blum C, Puchinger J, Raidl GR, Roli A (2010) A brief survey on hybrid metaheuristics. In: Proceedings of BIOMA, pp 3–18Google Scholar
  34. Caraffini F, Neri F, Cheng J, Zhang G, Picinali L, Iacca G, Mininno E (2013) Super-fit multicriteria adaptive differential evolution. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 1678–1685Google Scholar
  35. Caraffini F, Iacca G, Neri F, Picinali L, Mininno E (2013) A CMA-ES super-fit scheme for the re-sampled inheritance search. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 1123–1130Google Scholar
  36. Chakraborty D, Saha S, Dutta O (2014) DE-FPA: a hybrid differential evolution-flower pollination algorithm for function minimization. In: High performance computing and applications (ICHPCA), 2014 international conference. IEEE, pp 1–6Google Scholar
  37. Chakraborty D, Saha S, Maity S (2015) Training feedforward neural networks using hybrid flower pollination-gravitational search algorithm. In: Futuristic trends on computational analysis and knowledge management (ABLAZE), 2015 international conference. IEEE, pp 261–266Google Scholar
  38. Chakraborty D, Saha S, Maity S (2015) Training feedforward neural networks using hybrid flower pollination-gravitational search algorithm. In Futuristic trends on computational analysis and knowledge management (ABLAZE), 2015 international conference. IEEE, pp 261–266Google Scholar
  39. Chattopadhyay S, Banerjee S (2016) Optimum power allocation of parallel concatenated convolution turbo code using flower pollination algorithm. In: Control, instrumentation, energy & communication (CIEC), 2016 2nd international conference. IEEE, pp 516–520Google Scholar
  40. Chen KH, Wang KJ, Wang KM, Angelia MA (2014) Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data. Appl Soft Comput 24:773–780CrossRefGoogle Scholar
  41. Chiroma H, Khan A, Abubakar AI, Saadi Y, Hamza MF, Shuib L, Herawan T (2016) A new approach for forecasting OPEC petroleum consumption based on neural network train by using flower pollination algorithm. Appl Soft Comput 48:50–58CrossRefGoogle Scholar
  42. Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):35MATHCrossRefGoogle Scholar
  43. Cuevas E, Cienfuegos M, Zaldívar D, Pérez-Cisneros M (2013) A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst Appl 40(16):6374–6384CrossRefGoogle Scholar
  44. Cuevas E, Osuna V, Oliva D (2017) Filter design. In: Evolutionary computation techniques: a comparative perspective. Springer, pp 205–222Google Scholar
  45. Dahi ZAEM, Mezioud C, Draa A (2016) On the efficiency of the binary flower pollination algorithm: application on the antenna positioning problem. Appl Soft Comput 47:395–414CrossRefGoogle Scholar
  46. Das S, Suganthan PN (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, KolkataGoogle Scholar
  47. Dash P, Saikia LC, Sinha N (2016) Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system. Int J Electr Power Energy Syst 82:19–28CrossRefGoogle Scholar
  48. De Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: Proceedings of GECCO, vol 2000, pp 36–39Google Scholar
  49. de Lima Júnior PCR (2008) Integration of geographic information systems, meta-heuristics and multi-criteria analysis for territories alignment. Doctoral dissertation, Universidade do Porto PortugalGoogle Scholar
  50. Deb S, Goswami AK (2016) Congestion management by generator real power rescheduling using flower pollination algorithm. In: Control, instrumentation, energy & communication (CIEC), 2016 2nd international conference. IEEE, pp 437–441Google Scholar
  51. Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, ItalyGoogle Scholar
  52. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66CrossRefGoogle Scholar
  53. Draa A (2015) On the performances of the flower pollination algorithm–Qualitative and quantitative analyses. Appl Soft Comput 34:349–371CrossRefGoogle Scholar
  54. Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimisation. Appl Soft Comput 27:99–126CrossRefGoogle Scholar
  55. Dubey HM, Panigrahi BK, Pandit M (2014) Improved flower pollination algorithm for short term hydrothermal scheduling. In: International conference on swarm, evolutionary, and memetic computing. Springer, Cham, pp 721–737Google Scholar
  56. Dubey HM, Pandit M, Panigrahi BK (2015a) Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch. Renew Energy 83:188–202CrossRefGoogle Scholar
  57. Dubey HM, Pandit M, Panigrahi BK (2015b) A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems. Cognit Comput 7(5):594–608CrossRefGoogle Scholar
  58. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43Google Scholar
  59. El-henawy I, Ismail M (2014) An improved chaotic flower pollination algorithm for solving large integer programming problems. Int J Digit Content Technol Appl 8(3):72Google Scholar
  60. Emary E, Zawbaa HM, Hassanien AE, Tolba MF, Snášel V (2014) Retinal vessel segmentation based on flower pollination search algorithm. In: Proceedings of the fifth international conference on innovations in bio-inspired computing and applications IBICA 2014. Springer, New York, pp 93–100Google Scholar
  61. Emary E, Zawbaa HM, Hassanien AE, Parv B (2017) Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search. Adv Data Anal Classif 11(3):611–627MathSciNetCrossRefGoogle Scholar
  62. Eriksson O, Friis EM, Löfgren P (2000) Seed size, fruit size, and dispersal systems in angiosperms from the early cretaceous to the late tertiary. Am Nat 156(1):47–58CrossRefGoogle Scholar
  63. Frankel R, Galun E (2012) Pollination mechanisms, reproduction and plant breeding, vol 2. Springer, New YorkGoogle Scholar
  64. Fredriksson L (2010) A brief survey of Lévy walks: with applications to probe diffusion. (Bachelor dissertation). http://www.divaportal.org/smash/get/diva2:288755/FULLTEXT02.pdf
  65. Frohlich MW (2003) Opinion: an evolutionary scenario for the origin of flowers. Nat Rev Genet 4(7):559CrossRefGoogle Scholar
  66. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845MathSciNetMATHCrossRefGoogle Scholar
  67. Gandomi AH, Yang XS, Talatahari S, Alavi AH (eds) (2013) Metaheuristic applications in structures and infrastructures. NewnesGoogle Scholar
  68. Gao Y, Guan H, Qi Z, Hou Y, Liu L (2013) A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J Comput Syst Sci 79(8):1230–1242MathSciNetMATHCrossRefGoogle Scholar
  69. Gao ML, Zang YR, Shen J, Zhang YC, Yu DS (2016) Visual tracking based on flower pollination algorithm. In: Control conference (CCC), 2016 35th Chinese. IEEE, pp 3866–3868Google Scholar
  70. Gautam U, Malmathanraj R, Srivastav C (2015) Simulation for path planning of autonomous underwater vehicle using flower pollination algorithm, genetic algorithm and Q-learning. In: Cognitive computing and information processing (CCIP), 2015 international conference. IEEE, pp 1–5Google Scholar
  71. Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference. Springer, Berlin, pp 977–979MATHGoogle Scholar
  72. Glover F, McMillan C (1986) The general employee scheduling problem. An integration of MS and AI. Comput Oper Res 13(5):563–573CrossRefGoogle Scholar
  73. Gonidakis D (2016) Application of flower pollination algorithm to multi-objective environmental/economic dispatch. Int J Manag Sci Eng Manag 11(4):213–221Google Scholar
  74. Goyal S, Patterh MS (2015) Flower pollination algorithm based localization of wireless sensor network. In: Recent advances in engineering & computational sciences (RAECS), 2015 2nd international conference. IEEE, pp 1–5Google Scholar
  75. Guo SM, Yang CC, Hsu PH, Tsai JSH (2015) Improving differential evolution with a successful-parent-selecting framework. IEEE Trans Evol Comput 19(5):717–730CrossRefGoogle Scholar
  76. Harikrishnan R, Jawahar Senthil Kumar V, Sridevi Ponmalar P (2015) Nature inspired flower pollen algorithm for WSN localization problem. ARPN J Eng Appl Sci 10(5):2122–2125Google Scholar
  77. Haupt RL, Haupt SE (2004) Practical genetic algorithms. Wiley, New YorkMATHGoogle Scholar
  78. He X, Yang XS, Karamanoglu M, Zhao Y (2017) Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Proc Comput Sci 108:1354–1363CrossRefGoogle Scholar
  79. Hegazy O, Soliman OS, Salam MA (2015) Comparative study between FPA, BA, MCS, ABC, and PSO algorithms in training and optimizing of LS-SVM for stock market prediction. Int J Adv Comput Res 5(18):35Google Scholar
  80. Heng J, Wang C, Zhao X, Xiao L (2016) Research and application based on adaptive boosting strategy and modified CGFPA algorithm: a case study for wind speed forecasting. Sustainability 8(3):235CrossRefGoogle Scholar
  81. Hezam IM, Abdel-Baset M, Hassan BM (2016) A hybrid flower pollination algorithm with tabu search for unconstrained optimization problems. Inf Sci Lett 5(1):29–34.  https://doi.org/10.18576/isl/050104 CrossRefGoogle Scholar
  82. Hoang ND, Bui DT, Liao KW (2016) Groutability estimation of grouting processes with cement grouts using differential flower pollination optimized support vector machine. Appl Soft Comput 45:173–186CrossRefGoogle Scholar
  83. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70MathSciNetMATHGoogle Scholar
  84. Huang SJ, Gu PH, Su WF, Liu XZ, Tai TY (2015) Application of flower pollination algorithm for placement of distribution transformers in a low-voltage grid. In: Industrial technology (ICIT), 2015 IEEE international conference. IEEE, pp 1280–1285Google Scholar
  85. Huson IJ (2017) Mrmr Ba: a hybrid gene selection algorithm for cancer classification. J Theor Appl Inf Technol 95(12):2610–2618Google Scholar
  86. Jagatheesan K, Anand B, Samanta S, Dey N, Santhi V, Ashour AS, Balas VE (2017) Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with nonlinearity. Neural Comput Appl 28(1):475–488CrossRefGoogle Scholar
  87. Jain P, Bansal S, Singh AK, Gupta N (2015) Golomb ruler sequences optimization for FWM crosstalk reduction: multi-population hybrid flower pollination algorithm. In: Progress in electromagnetics research symposium (PIERS), Prague, Czech Republic, pp 2463–2467Google Scholar
  88. Jamil M, Zepernick HJ (2013) Lévy flights and global optimization. In: Swarm intelligence and bio-inspired computation: theory and applications, pp 49–72Google Scholar
  89. Jensi R, Jiji GW (2015) Hybrid data clustering approach using K-means and flower pollination algorithm. arXiv preprint arXiv:1505.03236
  90. Jiang M, Luo YP, Yang SY (2007) Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf Proc Lett 102(1):8–16MathSciNetMATHCrossRefGoogle Scholar
  91. Kalra S, Arora S (2016) Firefly algorithm hybridized with flower pollination algorithm for multimodal functions. In: Proceedings of the international congress on information and communication technology. Springer, Singapore, pp 207–219Google Scholar
  92. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, vol 200, Technical report-tr06. Erciyes University, Engineering Faculty, Computer Engineering DepartmentGoogle Scholar
  93. Kaur G, Singh D, Kaur M (2013) Robust and efficient ‘RGB’ based fractal image compression: flower pollination based optimization. Int J Comput Appl 78(10):11–15Google Scholar
  94. Kaveh A (2017) Applications of metaheuristic optimization algorithms in civil engineering. Springer, New YorkMATHCrossRefGoogle Scholar
  95. Kazemian M, Ramezani Y, Lucas C, Moshiri B (2006) Swarm clustering based on flowers pollination by artificial bees. In: Swarm intelligence in data mining. Springer, Berlin, pp 191–202Google Scholar
  96. Kessaci Y (2013) Multi-criteria scheduling on clouds. Doctoral dissertation, Université des Sciences et Technologie de Lille-Lille IGoogle Scholar
  97. Khalil AW (2015) An improved flower pollination algorithm for solving integer programming problems. Int J Appl Math Inf Sci 3(1):31–37MathSciNetGoogle Scholar
  98. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680MathSciNetMATHCrossRefGoogle Scholar
  99. Ku-Mahamud KR (2015) Hybrid ant colony system and flower pollination algorithms for global optimization. In: IT in Asia (CITA), 2015 9th international conference. IEEE, pp 1–9Google Scholar
  100. Kumar BS, Suryakalavathi M, Kumar GN (2015) Optimal power flow with static VAR compensator based on flower pollination algorithm to minimize real power losses. In Power, control, communication and computational technologies for sustainable growth (PCCCTSG), 2015 conference. IEEE, pp 112–116Google Scholar
  101. Kusuma I, Ma’sum MA, Sanabila HS, Wisesa HA, Jatmiko W, Arymurthy AM, Wiweko B (2016) Fetal head segmentation based on Gaussian elliptical path optimize by flower pollination algorithm and cuckoo search. In: Advanced computer science and information systems (ICACSIS), 2016 international conference. IEEE, pp 564–571Google Scholar
  102. Lakshmi D, Fathima AP, Muthu R (2016) A novel flower pollination algorithm to solve load frequency control for a hydro-thermal deregulated power system. Circuits Syst 7(04):166CrossRefGoogle Scholar
  103. Lenin K, Ravindhranath RB, Surya KM (2014) Shrinkage of active power loss by hybridization of flower pollination algorithm with chaotic harmony search algorithm. Control Theory Inform 4:31–38Google Scholar
  104. Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212Google Scholar
  105. Łukasik S, Kowalski PA (2015) Study of flower pollination algorithm for continuous optimization. In: Intelligent systems’ 2014. Springer, Cham, pp 451–459Google Scholar
  106. Mahata S, Saha SK, Kar R, Mandal D (2017) Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Comput.  https://doi.org/10.1007/s00500-017-2595-6 Google Scholar
  107. Mahdad B, Srairi K (2016) Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl Soft Comput 46:501–522CrossRefGoogle Scholar
  108. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys Rev E 49(5):4677CrossRefGoogle Scholar
  109. Merzougui A, Labed N, Hasseine A, Bonilla-Petriciolet A, Laiadi D, Bacha O (2016) Parameter Identification in liquid–liquid equilibrium modeling of food-related thermodynamic systems using flower pollination algorithms. Open Chem Eng J 10(1):59–73CrossRefGoogle Scholar
  110. Metwalli MAB, Hezam I (2015) A modified flower pollination algorithm for fractional programming problems. Int J Intell Syst Appl Eng 3(3):116–123CrossRefGoogle Scholar
  111. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61CrossRefGoogle Scholar
  112. Mishra A, Deb S (2016) Assembly sequence optimization using a flower pollination algorithm-based approach. J Intell Manuf.  https://doi.org/10.1007/s10845-016-1261-7 Google Scholar
  113. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. In: Data mining, systems analysis and optimization in biomedicine, vol 953(1). AIP Publishing, pp 162–173Google Scholar
  114. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57:192–203CrossRefGoogle Scholar
  115. Namachivayam G, Sankaralingam C, Perumal SK, Devanathan ST (2016) Reconfiguration and capacitor placement of radial distribution systems by modified flower pollination algorithm. Electric Power Compon Syst 44(13):1492–1502CrossRefGoogle Scholar
  116. Nasser AB, Hujainah F, Alsewari AA, Zamli KZ (2015) Sequence and sequence-less t-way test suite generation strategy based on flower pollination algorithm. In: Research and development (SCOReD), 2015 IEEE student conference. IEEE pp 676–680Google Scholar
  117. Nasser AB, Alsewari AA, Mu’azu AA, Zamli KZ (2016) Comparative performance analysis of flower pollination algorithm and harmony search based strategies: a case study of applying interaction testing in the real world. In: Proceeding book: 2nd international conference on new directions in multidisciplinary research and practice, 12–13 May 2016, Istanbul, Turkey, p 1–5Google Scholar
  118. Nesmachnow S, Iturriaga S, Dorronsoro B, Talbi EG, Bouvry P (2015) Metaheuristics for the virtual machine mapping problem in clouds. Informatica 26(1):111–134CrossRefGoogle Scholar
  119. Nigdeli SM, Bekdaş G, Yang XS (2015) Optimum structural design of pin-jointed plane frames using the flower pollination algorithm. In: 28th conference of the european chapter on combinatorial optimization (ECCO XXVIII-2015), Catania, Italy, pp 28–30Google Scholar
  120. Nigdeli SM, Bekdaş G, Yang XS (2016) Application of the flower pollination algorithm in structural engineering. In: Metaheuristics and optimization in civil engineering. Springer, pp 25–42Google Scholar
  121. Nigdeli SM, Bekdas G, Yang XS (2017a) Optimum tuning of mass dampers for seismic structures using flower pollination algorithm. Int J Theor Appl Mech 264–268Google Scholar
  122. Nigdeli SM, Bekdas G, Yang XS (2017b) Optimum tuning of mass dampers by using a hybrid method using harmony search and flower pollination algorithm. In: Harmony search algorithm. Advances in intelligent systems and computing, vol 514. Springer, pp 222–231Google Scholar
  123. Ochoa A, González S, Margain L, Padilla T, Castillo O, Melín P (2014) Implementing flower multi-objective algorithm for selection of university academic credits. In: Nature and biologically inspired COMPUTING (NaBIC), 2014 sixth world congress. IEEE, pp 7–11Google Scholar
  124. Oda ES, Abdelsalam AA, Abdel-Wahab MN, El-Saadawi MM (2015) Distributed generations planning using flower pollination algorithm for enhancing distribution system voltage stability. Ain Shams Eng J 8(4):593–603.  https://doi.org/10.1016/j.asej.2015.12.001 CrossRefGoogle Scholar
  125. Ouadfel S, Taleb-Ahmed A (2016) Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study. Expert Syst Appl 55:566–584CrossRefGoogle Scholar
  126. Pambudy MMM, Hadi SP, Ali HR (2014) Flower pollination algorithm for optimal control in multi-machine system with GUPFC. In: Information technology and electrical engineering (ICITEE), 2014 6th international conference. IEEE, pp 1–6Google Scholar
  127. Pandya KS, Dabhi DA, Joshi SK (2015) Comparative study of bat & flower pollination optimization algorithms in highly stressed large power system. In: Power systems conference (PSC), 2015 Clemson University. IEEE, pp 1–5Google Scholar
  128. Pathak P, Mahajan K (2015) A pollination based optimization for load balancing task scheduling in cloud computing. Int J Adv Res Comput Sci 6(7):7–12Google Scholar
  129. Platt GM (2014) Application of the flower pollination algorithm in nonlinear algebraic systems with multiple solutions. Eng Optim 2014:117Google Scholar
  130. Poikolainen I, Neri F (2013) Differential evolution with concurrent fitness based local search. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 384–391Google Scholar
  131. Pop CB, Chifu VR, Salomie I, Racz DS, Bonta RM (2017) Hybridization of the flower pollination algorithm—a case study in the problem of generating healthy nutritional meals for older adults. In: Nature-inspired computing and optimization. Springer, New York, pp 151–183Google Scholar
  132. Prathiba R, Moses MB, Sakthivel S (2014) Flower pollination algorithm applied for different economic load dispatch problems. Int J Eng Technol 6(2):1009–1016Google Scholar
  133. Pravallika DL, Rao BV (2016) Flower pollination algorithm based optimal setting of TCSC to minimize the transmission line losses in the power system. Proc Comput Sci 92:30–35CrossRefGoogle Scholar
  134. Putra AP, Anggorowati MA (2016) MetaheuristicFPA: an implementation of flower pollination algorithm in R. Retrieved 25 July 2017. https://rdrr.io/cran/MetaheuristicFPA/
  135. Putra PH, Saputra TA (2016) Modified flower pollination algorithm for nonsmooth and multiple fuel options economic dispatch. In: Information technology and electrical engineering (ICITEE), 2016 8th international conference. IEEE, pp 1–5Google Scholar
  136. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRefGoogle Scholar
  137. Raidl GR (2006) A unified view on hybrid metaheuristics. In: International workshop on hybrid metaheuristics. Springer, pp 1–12Google Scholar
  138. Ram JP, Rajasekar N (2017a) A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC). Energy 118:512–525CrossRefGoogle Scholar
  139. Ram JP, Rajasekar N (2017b) A novel flower pollination based global maximum power point method for solar maximum power point tracking. IEEE Trans Power Electron 32(11):8486–8499CrossRefGoogle Scholar
  140. Ram JP, Babu TS, Dragicevic T, Rajasekar N (2017) A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers Manag 135:463–476CrossRefGoogle Scholar
  141. Ramadas M, Kumar S (2016) An efficient hybrid approach using differential evolution and flower pollination algorithm. In: Cloud system and big data engineering (confluence), 2016 6th international conference. IEEE, pp 59–64Google Scholar
  142. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248MATHCrossRefGoogle Scholar
  143. Rathasamuth W, Nootyaskool S (2016) Comparison solving discrete space on flower pollination algorithm, PSO and GA. In: Knowledge and smart technology (KST), 2016 8th international conference. IEEE, pp 18–21Google Scholar
  144. Reddy PDP, Reddy VV, Manohar TG (2016) Application of flower pollination algorithm for optimal placement and sizing of distributed generation in distribution systems. J Electr Syst Inf Technol 3(1):14–22Google Scholar
  145. Regalado JA, Emilio BE, Cuevas E (2015) Optimal power flow solution using modified flower pollination algorithm. In: Power, electronics and computing (ROPEC), 2015 IEEE international autumn meeting. IEEE, pp 1–6‏Google Scholar
  146. Ripley BD (2001) The R project in statistical computing. MSOR Connect Newslett LTSN Maths Stats OR Netw 1(1):23–25Google Scholar
  147. Rodrigues D, Yang XS, De Souza AN, Papa JP (2015) Binary flower pollination algorithm and its application to feature selection. In: Recent advances in swarm intelligence and evolutionary computation. Springer, pp 85–100Google Scholar
  148. Rodrigues D, Silva GF, Papa JP, Marana AN, Yang XS (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62:81–90CrossRefGoogle Scholar
  149. Sakib N, Kabir MWU, Subbir M, Alam S (2014) A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems. Int J Appl Inf Syst 7(9):13–19Google Scholar
  150. Sakthivel S, Manopriya P, Venus S, Ranjitha S, Subhashini R (2016) Optimal reactive power dispatch problem solved by using flower pollination algorithm. Int J Appl Eng Res 11(6):4387–4391Google Scholar
  151. Saleh H (2002) Metaheuristics for optimising the use of geographic information systems. In: Proceedings of the EuIo—conference of the science for water policy (SWAP): the implications of the water framework directive, East Anglia. UKGoogle Scholar
  152. Saleh H. (2003). Metaheuristics for optimizing the water framework directive based geographic information systems. In: Science for water policy (SWAP). The EC, Research Directorate-General, pp 195–215Google Scholar
  153. Salgotra R, Singh U (2016) A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Comput Appl.  https://doi.org/10.1007/s00521-016-2833-3 Google Scholar
  154. Sampson JR (1976) Adaptation in natural and artificial systems (John H. Holland). SIAM Rev 18(3):529–530MathSciNetCrossRefGoogle Scholar
  155. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47CrossRefGoogle Scholar
  156. Saxena P, Kothari A (2016) Linear antenna array optimization using flower pollination algorithm. SpringerPlus 5(1):306CrossRefGoogle Scholar
  157. Sayed SAF, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recogn Lett 77:21–27CrossRefGoogle Scholar
  158. Sharawi M, Emary E, Saroit IA, El-Mahdy H (2014) Flower pollination optimization algorithm for wireless sensor network lifetime global optimization. Int J Soft Comput Eng 4(3):54–59Google Scholar
  159. Shilaja C, Ravi K (2016) Optimal line flow in conventional power system using euclidean affine flower pollination algorithm. Int J Renew Energy Res 6(1)Google Scholar
  160. Shilaja C, Ravi K (2017) Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew Energy 107:550–566CrossRefGoogle Scholar
  161. Shlesinger MF, Zaslavsky GM, Frisch U (1995) Lévy flights and related topics in physics. Lect Notes Phys 450:52MATHGoogle Scholar
  162. Singh U, Salgotra R (2018) Synthesis of linear antenna array using flower pollination algorithm. Neural Comput Appl 29(2):435–445CrossRefGoogle Scholar
  163. Soto R, Crawford B, Olivares R, De Conti M, Rubio R, Almonacid B, Niklander S (2016) Resolving the manufacturing cell design problem using the flower pollination algorithm. In: International workshop on multi-disciplinary trends in artificial intelligence. Springer, pp 184–195Google Scholar
  164. Sudabattula S, Kowsalya M (2016) Distributed energy resources allocation using flower pollination algorithm in radial distribution systems. Energy Proc 103:76–81CrossRefGoogle Scholar
  165. Sutton AM, Lunacek M, Whitley LD (2007) Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 1428–1435Google Scholar
  166. Tahani M, Babayan N, Pouyaei A (2015) Optimization of PV/wind/battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers Manag 106:644–659CrossRefGoogle Scholar
  167. Takhtajan A (2009) Flowering plants. Springer, New YorkCrossRefGoogle Scholar
  168. Tamilselvan V, Jayabarathi T (2016) Multi objective flower pollination algorithm for solving capacitor placement in radial distribution system using data structure load flow analysis. Arch Electric Eng 65(2):203–220CrossRefGoogle Scholar
  169. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 71–78Google Scholar
  170. Teodorović D, Dell’Orco M (2005) Bee colony optimization—a cooperative learning approach to complex transportation problems. In: Advanced OR and AI methods in transportation: proceedings of 16th mini–EURO conference and 10th meeting of EWGT (13–16 September 2005). Publishing House of the Polish Operational and System Research, Poznan, pp 51–60Google Scholar
  171. Trivedi IN, Purani SV, Jangir PK (2015) Optimized over-current relay coordination using flower pollination algorithm. In: Advance computing conference (IACC), 2015 IEEE international conference. IEEE, pp 72–77Google Scholar
  172. Tsai PW, Nguyen TT, Pan JS, Dao TK, Zheng WM (2017) A parallel optimization algorithm based on communication strategy of pollens and agents. In: Advances in intelligent information hiding and multimedia signal processing: proceeding of the twelfth international conference on intelligent information hiding and multimedia signal processing, Nov., 21–23, 2016, Kaohsiung, Taiwan, vol 2. Springer, pp 315–324Google Scholar
  173. Tvrdík J, Poláková R (2013) Competitive differential evolution applied to CEC 2013 problems. In: Evolutionary computation (CEC), 2013 IEEE congress. IEEE, pp 1651–1657Google Scholar
  174. Valenzuela L, Valdez F, Melin P (2017) Flower pollination algorithm with fuzzy approach for solving optimization problems. In: Nature-inspired design of hybrid intelligent systems. Springer, New York, pp 357–369Google Scholar
  175. Velamuri S, Sreejith S, Ponnambalam P (2016) Static economic dispatch incorporating wind farm using flower pollination algorithm. Perspect Sci 8:260–262CrossRefGoogle Scholar
  176. Verma S, Mukherjee V (2016) A novel flower pollination algorithm for congestion management in electricity market. In: Recent advances in information technology (RAIT), 2016 3rd international conference. IEEE, pp 203–208Google Scholar
  177. Vijayaraj S, Santhi RK (2016) Multi-area economic dispatch using flower pollination algorithm. In: Electrical, electronics, and optimization techniques (ICEEOT), international conference. IEEE, pp 4355–4360Google Scholar
  178. Walton S, Hassan O, Morgan K, Brown MR (2011) Modified cuckoo search: a new gradient free optimisation algorithm. Chaos Solitons Fractals 44(9):710–718CrossRefGoogle Scholar
  179. Wang R, Zhou Y (2014) Flower pollination algorithmwith dimension by dimension improvement. Math Probl Eng 2014(2014):481791.  https://doi.org/10.1155/2014/481791 Google Scholar
  180. Wang F, He XS, Wang Y, Yang SM (2012) Markov model and convergence analysis of cuckoo search algorithm. Comput Eng 38(11):180–185Google Scholar
  181. Wang R, Zhou Y, Zhao C, Wu H (2015) A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation. BioMed Mater Eng 26(s1):S1345–S1351Google Scholar
  182. Wang R, Zhou Y, Qiao S, Huang K (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Process Lett 116(1):1–14CrossRefGoogle Scholar
  183. Widihananta M (2014). FPA C++ code. Retrieved 25 July 2017. https://github.com/atnanahidiw/fpa
  184. Wie BC, Chai WY (2004) An intelligent GIS-based spatial zoning system with multiobjective hybrid metaheuristic method. In: Orchard B, Yang C, Ali M (eds) Innovations in applied artificial intelligence. IEA/AIE 2004. Lecture notes in computer science, vol 3029. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-540-24677-0_79
  185. Xu S, Wang Y (2017) Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers Manag 144:53–68CrossRefGoogle Scholar
  186. Xu S, Wang Y, Huang F (2017a) Optimization of multi-pass turning parameters through an improved flower pollination algorithm. Int J Adv Manuf Technol 89(1–4):503–514CrossRefGoogle Scholar
  187. Xu S, Wang Y, Liu X (2017b) Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-2890-2 Google Scholar
  188. Yamany W, Zawbaa HM, Emary E, Hassanien AE (2015) Attribute reduction approach based on modified flower pollination algorithm. In: Fuzzy systems (FUZZ-IEEE), 2015 IEEE international conference. IEEE, pp 1–7Google Scholar
  189. Yang XS (2008) Firefly algorithm (chapter 8). Nature-inspired metaheuristic algorithms. Luniver Press, BristolGoogle Scholar
  190. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74Google Scholar
  191. Yang XS (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation. Springer, Berlin, pp 240–249Google Scholar
  192. Yang XE (2016) Flower pollination algorithm by Xin-She Yang in Java. Retrieved 25 July 2017. https://github.com/fum968/FPA?utm_source=itdadao&utm_medium=referral
  193. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Nature and biologically inspired computing, 2009. NaBIC 2009. World Congress. IEEE, pp 210–214Google Scholar
  194. Yang X-S, Suash D (2010) Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 101–111Google Scholar
  195. Yang XS, Gandomi AH, Talatahari S, Alavi AH (Eds) (2012) Metaheuristics in water, geotechnical and transport engineering. NewnesGoogle Scholar
  196. Yang XS, Karamanoglu M, He X (2013a) Multi-objective flower algorithm for optimization. Proc Comput Sci 18:861–868CrossRefGoogle Scholar
  197. Yang XS, Deb S, He X (2013) Eagle strategy with flower algorithm. In: Advances in computing, communications and informatics (ICACCI), 2013 international conference. IEEE, pp 1213–1217Google Scholar
  198. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237MathSciNetCrossRefGoogle Scholar
  199. Yusoh ZIM, Tang M (2012) Composite saas placement and resource optimization in cloud computing using evolutionary algorithms. In: Cloud computing (CLOUD), 2012 IEEE 5th international conference. IEEE, pp 590–597Google Scholar
  200. Zainudin A, Sia CK, Ong P, Narong OLC, Nor NHM (2017) Taguchi design and flower pollination algorithm application to optimize the shrinkage of triaxial porcelain containing palm oil fuel ash. In: IOP conference series: materials science and engineering, vol 165(1). IOP Publishing, p 012036Google Scholar
  201. Zawbaa HM, Hassanien AE, Emary E, Yamany W, Parv B (2015) Hybrid flower pollination algorithm with rough sets for feature selection. In: Computer engineering conference (ICENCO), 2015 11th international conference. IEEE, pp 278–283Google Scholar
  202. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958CrossRefGoogle Scholar
  203. Zhao C, Zhou Y (2016) A complex encoding flower pollination algorithm for global numerical optimization. In: International conference on intelligent computing. Springer, pp 667–678Google Scholar
  204. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(04):1659010CrossRefGoogle Scholar
  205. Zhou Y, Zhang S, Luo Q, Wen C (2016a) Using flower pollination algorithm and atomic potential function for shape matching. Neural Comput Appl 29(6):21–40.  https://doi.org/10.1007/s00521-016-2524-0 CrossRefGoogle Scholar
  206. Zhou Y, Wang R, Luo Q (2016b) Elite opposition-based flower pollination algorithm. Neurocomputing 188:294–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Operations Research, Faculty of Computers and InformaticsZagazig UniversityZagazigEgypt

Personalised recommendations