Abidin ZZ, Ngah UK, Arshad MR, Ping OB (2010) A novel y optimization algorithm for swarming application. In: IEEE conference on robotics, automation and mechatronics (RAM), pp 425–428
Amdahl Gene M (1967) Validity of the single processor approach to achieving Large-Scale Computing Capabilities (PDF). AFIPS Conference Proceedings 30: 483–485. doi:10.1145/1465482.1465560
Apostolopoulos T, Vlachos A (2011) Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int J Comb 2011: Article ID 523806
Barricelli NA (1954) Esempi numerici di processi di evoluzione. Methodos 6:45–68
MathSciNet
Google Scholar
Barricelli NA (1957) Symbiognetic evolution processes realized by artificial methods. Methodos 9:143–182
Google Scholar
Beni G, Wang J (1989) Swarm intelligence in cellular robotic systems. In: Proceedings of NATO advanced workshop on robots and biological systems. Tuscany, Italy
Bottou Lon (1998) Online algorithms and stochastic approximations. Online Learning and Neural Networks. Cambridge University Press. ISBN 978-0-521-65263-6
Bullnheimer B, Richard F, Hartl, Strau C (1997) A new rank based version of the ant system: a computational study. Working Paper No. 1
Coelho L, Bernert DL, Mariani VC (2011) A chaotic firefly algorithm applied to reliability-redundancy optimization. In: 2011 IEEE congress on evolutionary computation (CEC’11), pp 517–521
Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: ECAL91—European conference on artificial life, pp 134–142
Denebourg JL, Goss S (1989) Collective patterns and decision-making. Ethol Ecol Evol 1(4):295–311
Article
Google Scholar
Deneubourg J-L, Pasteels JM, Verhaeghe JC (1983) Probabilistic behaviour in ants: a strategy of errors. J Theoret Biol 105(2):259–271
Article
Google Scholar
Dorigo M, Gambardella LM (1997b) Ant colonies for the traveling salesman problem. BioSystems 43(2):73–81
Article
Google Scholar
Dorigo M, Gambardella LM (1997a) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66
Article
Google Scholar
Dorigo M, Maniezzo V, Colorni A (1991) The ant system: an autocatalytic optimizing process. In: No. 91-016. Technical report
Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 26(1):29–41
Article
Google Scholar
Finilla AB, Gomez MA, Sebenik C, Doll DJ (1994) Quantum annealing: a new method for minimizing multidimensional functions. Chem Phys Lett 219:343
Article
Google Scholar
Fraser AS (1960) Simulation of genetic systems by automatic digital computers vi. epistasis. Aust J Biol Sci 13(2):150–162
Google Scholar
Glover F (1977) Heuristics for integer programming, using surrogate constraints. Decis Sci 8(1):156–166
Article
Google Scholar
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Operat Res 13(5):533549. doi:10.1016/0305-0548(86)90048-1
MathSciNet
Google Scholar
Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190
MATH
Article
Google Scholar
Goldberg DE (1991) The theory of virtual alphabets-parallel problem solving from nature. Springer, Berlin
Google Scholar
Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 32:95–99
Article
Google Scholar
Green DG, Liu J, Abbass H (2014) Dual phase evolution: from theory to practice. Springer, Berlin ISBN 978-1441984227
Book
Google Scholar
Gupta DK, Arora Y, Singh UK, Gupta JP (2012) Recursive Ant Colony Optimization for estimation of parameters of a function. In: Recent advances in Information Technology (RAIT), International conference. doi:10.1109/RAIT.2012.6194620, pp 448–454
Gustafson JL (1988) Reevaluating Amdahl’s Law. Commun ACM 31(5):532–533
Article
Google Scholar
Gutjahr WJ (2000) A graph-based Ant System and its convergence. Future Gener Comput Syst 16:873–888
Article
Google Scholar
Haddad OB, Afshar A, Marino AB (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20(5):661–680
Article
Google Scholar
Hedayatzadeh R, Salmassi F, Keshtgari M, Akbari R, Ziarati K (2010) Termite colony optimization: a novel approach for optimizing continuous problems. In: 18th Iranian conference on electrical engineering (ICEE), pp 553–558
Heppner F, Grenander U, Krasner S (1990) A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of Chaos. AAAS Publications, Washington, DC
Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Michigan
Google Scholar
http://www.metaheuristics.net/, 2000. Visited in (January 2003)
James K, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4(2)
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. In: Technical Report TR06, Erciyes University Press, Erciyes
Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915. doi:10.4249/scholarpedia.6915
Article
Google Scholar
Kennedy J, Eberhart R (1995) Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks IV. doi:10.1109/ICNN.1995.488968
Kirkpatrick S, Gelattr SD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671
MATH
MathSciNet
Article
Google Scholar
Krishnanand KN, Ghose D (2005) Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: IEEE Swarm intelligence symposium, pp 84–91
Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Springer, Berlin
MATH
Book
Google Scholar
Lukasik S, Zak S (2009) Firefly algorithm for continuous constrained optimization tasks. Computational collective intelligence. In: Semantic Web, Social networks and multi-agent systems, pp 97–106
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087
Article
Google Scholar
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer. Adv Eng Softw 69:46–61
Article
Google Scholar
Mirjalili S (2015) The Ant Lion optimizer. Adv Eng Softw 83:8098
Article
Google Scholar
Nakrani S, Tovey C (2004) On honey bees and dynamic server allocation in internet hosting centers. Adapt Behav 12(3–4):223240
Google Scholar
Niu B (2012) Bacterial colony optimization. Dis Dyn Nat Soc. Article ID 698057
Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Operat Res 63(513):623
MathSciNet
Google Scholar
Pan WT (2011) A new fruitfly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74
Article
Google Scholar
Rampriya B, Mahadevan K, Kannan S (2010) Unit commitment in deregulated power system using Lagrangian firefly algorithm. In: Proceedings of IEEE international conference on communication control and computing technologies (ICCCCT), pp 389–393
Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. Comput Graph 21(4):25–34
Article
Google Scholar
Rosengren R (1971) Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zool Fenn 133:1–106
Google Scholar
Sayadi MK, Ramezanian R, Ghaffari-Nasab N (2010) A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int J Ind Eng Comput 1:110
Google Scholar
Schmidt G (2000) Scheduling with limited machine availability. Eur J Oper Res 121(1):1–15
MATH
Article
Google Scholar
Shi Y, Eberhart R (1998) A modified particle swarm optimizer. Evolutionary computation proceedings. In: IEEE World congress on computational intelligence, the 1998 IEEE international conference on IEEE
Snyder L (1986) Type architectures, shared memory, and the corollary of modest potential. Ann Rev Comput Sci 1:289–317
Article
Google Scholar
Sorensen K (2012) Metaheuristics the metaphor exposed. In: International transactions of operations research. Pub Online: Feb 08, 2013. doi:10.1111/itor.12001 (p)
Sorin CN, Oprean C, Kifor CV, Carabulea I (2008) Elitist ant system for route allocation problem. In: World scientific and engineering academy and society (WSEAS) Stevens Point, Wisconsin, USA
Sttzle T, Hoos HH (2000) Max Min Ant System. Future Gener Comput Syst 16:889–914
Article
Google Scholar
Talreja S (2013) A heuristic proposal in the dimension of Ant colony Optimization. Appl Math Sci 7(41):2017–2026
MathSciNet
Google Scholar
Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):6585. doi:10.1007/BF00175354
Xiao-Min H, Zhang J, Li Y (2008) Orthogonal methods based Ant Colony search for solving continuous optimization problems. J Comput Sci Technol 23(1):2–18
Article
Google Scholar
Yang XS (2008) Nature-inspired metaheuristic algorithms. Frome. In: Luniver Press. ISBN 1-905986-10-6
Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization (NISCO 2010), Studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74
Chapter
Google Scholar