Skip to main content

Advertisement

Log in

Adaptive systems: a content analysis on technical side for e-learning environments

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Adaptive systems refer to autonomous interactive systems that adjust their behavior and functionality to environmental changes. In e-learning context, adaptive e-learning systems (AESs) adapt their services to users interests, knowledge and goals. In order to investigate the trend of researches in the field of adaptation in e-learning systems, a comprehensive survey of research papers in this context is presented. In this regard, 190 research papers, published between 2000 and 2012, from 45 journals are reviewed and analyzed. The basic contributions of the paper are manifold. First, it provides classifications of research papers from two different points of view: the adaptive technologies utilized in research papers in order to provide adaptation services for AESs and the application fields of research papers in AESs as research goals. Second, it presents statistical analyses on adaptive technologies and application fields. The analyses are carried out based on publication year of papers, the publication year versus adaptive technologies, the publication year versus application fields and adaptive technologies versus application fields. Third, the open problems, current state and prospective direction of researches in AESs are discussed. Finally, the paper suggests what adaptive technology might be the best choice for ongoing researches in each application field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acampora G, Gaeta M, Loia V (2011) Combining multi-agent paradigm and memetic computing for personalized and adaptive learning experiences. Comput Intel 27(2):141–165

    Article  MathSciNet  Google Scholar 

  • Akbulut Y, Cardak CS (2012) Adaptive educational hypermedia accommodating learning styles: a content analysis of publications from 2000 to 2011. Comput Educ 58(2):835–842

    Article  Google Scholar 

  • Alfonseca E, Rodríguez P, Pérez D (2007) An approach for automatic generation of adaptive hypermedia in education with multilingual knowledge discovery techniques. Comput Educ 49(2):495–513

    Article  Google Scholar 

  • Al-Muhaideb S, Menai M (2011) Evolutionary computation approaches to the curriculum sequencing problem. Nat Comput 10(2):891–920

    Article  MATH  MathSciNet  Google Scholar 

  • Ariga T, Watanabe T (2008) Teaching materials to enhance the visual expression of web pages for students not in art or design majors. Comput Educ 51(2):815–828

    Article  Google Scholar 

  • Aroyo L, De Bra P, Houben G, Vdovjak R (2004) Embedding information retrieval in adaptive hypermedia: IR meets AHA!. New Rev Hypermed Multimed 10(1):53–76

    Article  Google Scholar 

  • Aroyo L, Houben G (2010) User modeling and adaptive semantic web. Semant Web 1(1):105–110

    Google Scholar 

  • Avgeriou P, Retalis S (2005) Criton: a hypermedia design tool. Multimed Tools Appl 27(1):5–21

    Article  Google Scholar 

  • Bai S, Chen S (2008) Automatically constructing concept maps based on fuzzy rules for adapting learning systems. Expert Syst Appl 35(1):41–49

    Article  MathSciNet  Google Scholar 

  • Baldoni M, Baroglio C, Patti V (2004) Web-based adaptive tutoring: an approach based on logic agents and reasoning about actions. Artif Intel Rev 22(1):3–39

    Article  MATH  Google Scholar 

  • Barla M, Bieliková M, Ezzeddinne A, Kramár T, Šimko M, Vozár O (2010) On the impact of adaptive test question selection for learning efficiency. Comput Educ 55(2):846–857

    Article  Google Scholar 

  • Baylari A, Montazer G (2009) Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Syst Appl 36(4):8013–8021

    Article  Google Scholar 

  • Beydoun G, Kultchitsky R, Manasseh G (2007) Evolving semantic web with social navigation. Expert Syst Appl 32(2):265–276

    Article  Google Scholar 

  • Bien Z, Lee H (2007) Effective learning system techniques for human–robot interaction in service environment. Knowl Based Syst 20(5):439–456

    Article  Google Scholar 

  • Biletska O, Biletskiy Y, Li H, Vovk R (2010) A semantic approach to expert system for e-assessment of credentials and competencies. Expert Syst Appl 37(10):7003–7014

    Article  Google Scholar 

  • Biletskiy Y, Baghi H, Keleberda I, Fleming M (2009) An adjustable personalization of search and delivery of learning objects to learners. Expert Syst Appl 36(5):9113–9120

    Article  Google Scholar 

  • Biletskiy Y, Baghi JSRVH (2012) A rule-based system for hybrid search and delivery of learning objects to learners. Interact Technol Smart Educ 9(4):263–279

    Article  Google Scholar 

  • Bittencourt I, Costa E, Silva M, Soares E (2009) A computational model for developing semantic web-based educational systems. Knowl Based Syst 22(4):302–315

    Article  Google Scholar 

  • Bousbia N, Rebaï I, Labat J, Balla A (2010) Learners navigation behavior identification based on trace analysis. User Model User Adapt Interact 20(5):455–494

    Article  Google Scholar 

  • Brafman RI, Domshlak C, Shimony SE (2004) Qualitative decision making in adaptive presentation of structured information. ACM Trans Inf Syst 22(4):503–539. doi:10.1145/1028099.1028100

    Article  Google Scholar 

  • Brown E, Cristea A, Stewart C, Brailsford T (2005) Patterns in authoring of adaptive educational hypermedia: a taxonomy of learning styles. Educ Technol Soc 8(3):77–90

    Google Scholar 

  • Brusilovsky P (2001) Adaptive hypermedia. User Model User Adapt Interact 11:87–110

    Article  MATH  Google Scholar 

  • Cabada R, Estrada MB, García CR (2011) EDUCA: a web 2.0 authoring tool for developing adaptive and intelligent tutoring systems using a Kohonen network. Expert Syst Appl 38(8):9522–9529

    Article  Google Scholar 

  • Carchiolo V, Longheu A, Malgeri M (2010) Reliable peers and useful resources: searching for the best personalised learning path in a trust-and recommendation-aware environment. Inf Sci 180(10):1893–1907

  • Carmagnola F, Cena F (2009) User identification for cross-system personalisation. Inf Sci 179(1):16–32

    Article  Google Scholar 

  • Castellanos-Nieves D, Fernández-Breis J, Valencia-García R, Martínez-Béjar R, Iniesta-Moreno M (2011) Semantic web technologies for supporting learning assessment. Inf Sci 181(9):1517–1537

    Article  Google Scholar 

  • Castro F, Vellido A, Nebot n, Mugica F (2007) Applying data mining techniques to e-learning problems. In: Jain L, Tedman R, Tedman D (eds) Evolution of teaching and learning paradigms in intelligent environment, studies in computational intelligence, vol 62. Springer, Berlin, pp 183–221

    Google Scholar 

  • Caumanns J (2000) Bottom-up generation of hypermedia documents. Multimed Tools Appl 12(2):109–128

    Article  MATH  Google Scholar 

  • Chang Y, Huang Y, Chu C (2009a) B2 model: a browsing behavior model based on high-level petri nets to generate behavioral patterns for e-learning. Expert Syst Appl 36(10):12,423–12,440

    Article  Google Scholar 

  • Chang Y, Kao W, Chu C, Chiu C (2009b) A learning style classification mechanism for e-learning. Comput Educ 53(2):273–285

    Article  Google Scholar 

  • Chang YC, Huang YC, Chu CP (2009c) B2 model: a browsing behavior model based on high-level petri nets to generate behavioral patterns for e-learning. Expert Syst Appl 36(10):12,423–12,440

    Article  Google Scholar 

  • Chang Y, Chu C (2010) Applying learning behavioral petri nets to the analysis of learning behavior in web-based learning environments. Inf Sci 180(6):995–1009

    Article  MathSciNet  Google Scholar 

  • Chen SM, Sue PJ (2013) Constructing concept maps for adaptive learning systems based on data mining techniques. Expert Syst Appl 40(7):2746–2755

  • Chen C, Lee H, Chen Y (2005) Personalized e-learning system using item response theory. Comput Educ 44(3):237–255

    Article  Google Scholar 

  • Chen C, Liu C, Chang M (2006) Personalized curriculum sequencing utilizing modified item response theory for web-based instruction. Expert Syst Appl 30(2):378–396

    Article  Google Scholar 

  • Chen C, Hsieh Y, Hsu S (2007a) Mining learner profile utilizing association rule for web-based learning diagnosis. Expert Syst Appl 33(1):6–22

    Article  Google Scholar 

  • Chen CM, Hsieh YL, Hsu SH (2007b) Mining learner profile utilizing association rule for web-based learning diagnosis. Expert Syst Appl 33(1):6–22

    Article  Google Scholar 

  • Chen C (2008) Intelligent web-based learning system with personalized learning path guidance. Comput Educ 51(2):787–814

    Article  Google Scholar 

  • Chen G, Chang C, Wang C (2008a) Using adaptive e-news to improve undergraduate programming courses with hybrid format. Comput Educ 51(1):239–251

    Article  Google Scholar 

  • Chen N, Wei C, Chen H et al (2008b) Mining e-learning domain concept map from academic articles. Comput Educ 50(3):1009–1021

    Article  Google Scholar 

  • Chen C (2009) Personalized e-learning system with self-regulated learning assisted mechanisms for promoting learning performance. Expert Syst Appl 36(5):8816–8829

    Article  Google Scholar 

  • Chen N, Wei C, Liu C et al (2011) Effects of matching teaching strategy to thinking style on learners quality of reflection in an online learning environment. Comput Educ 56(1):53–64

    Article  MathSciNet  Google Scholar 

  • Chen S, Bai S (2009) Learning barriers diagnosis based on fuzzy rules for adaptive learning systems. Expert Syst Appl 36(8):11,211–11,220

    Article  Google Scholar 

  • Chen S, Bai S (2010) Using data mining techniques to automatically construct concept maps for adaptive learning systems. Expert Syst Appl 37(6):4496–4503

    Article  Google Scholar 

  • Chen C, Duh L (2008) Personalized web-based tutoring system based on fuzzy item response theory. Expert Syst Appl 34(4):2298–2315

    Article  Google Scholar 

  • Cheng CH, Chen TL, Wei LY, Chen JS (2011) A new e-learning achievement evaluation model based on rbf-nn and similarity filter. Neural Comput Appl 20(5):659–669

    Article  Google Scholar 

  • Chiou C, Tseng J, Hwang G, Heller S (2010) An adaptive navigation support system for conducting context-aware ubiquitous learning in museums. Comput Educ 55(2):834–845

    Article  Google Scholar 

  • Cho J, Kwon K, Park Y (2007) Collaborative filtering using dual information sources. Intel Syst IEEE 22(3):30–38

    Article  Google Scholar 

  • Chrysafiadi K, Virvou M (2012) Evaluating the integration of fuzzy logic into the student model of a web-based learning environment. Expert Syst Appl 39(18):13127–13134

    Article  Google Scholar 

  • Chu H, Chen T, Lin C, Liao M, Chen Y (2009) Development of an adaptive learning case recommendation approach for problem-based e-learning on mathematics teaching for students with mild disabilities. Expert Syst Appl 36(3):5456–5468

    Article  Google Scholar 

  • Chu H, Liao M, Chen T, Lin C, Chen Y (2011a) Learning case adaptation for problem-oriented e-learning on mathematics teaching for students with mild disabilities. Expert Syst Appl 38(3):1269–1281

    Article  Google Scholar 

  • Chu KK, Lee CI, Tsai RS (2011b) Ontology technology to assist learners navigation in the concept map learning system. Expert Syst Appl 38(9):11,293–11,299

    Article  Google Scholar 

  • Cline B, Brewster C, Fell R (2010) A rule-based system for automatically evaluating student concept maps. Expert Syst Appl 37(3):2282–2291

    Article  Google Scholar 

  • Cocea M, Weibelzahl S (2009) Log file analysis for disengagement detection in e-learning environments. User Model User Adapt Interact 19(4):341–385

    Article  Google Scholar 

  • Colace F, De Santo M, Gaeta M (2009) Ontology for e-learning: a case study. Interact Technol Smart Educ 6(1):6–22

    Article  Google Scholar 

  • Conati C, Merten C (2007) Eye-tracking for user modeling in exploratory learning environments: an empirical evaluation. Knowl Based Syst 20(6):557–574

    Article  Google Scholar 

  • Correia N, Romero L (2006) Storing user experiences in mixed reality using hypermedia. Vis Comput 22(12):991–1001. doi:10.1007/s00371-006-0039-x

    Article  Google Scholar 

  • Cuéllar M, Delgado M, Pegalajar M (2011) Improving learning management through semantic web and social networks in e-learning environments. Expert Syst Appl 38(4):4181–4189

    Article  Google Scholar 

  • DE Dekson SE (2010) Adaptive e-learning techniques in the development of teaching electronic portfolio a survey. Int J Eng Sci Technol 9(2):4175–4181

    Google Scholar 

  • De Meo P, Garro A, Terracina G, Ursino D (2007) Personalizing learning programs with x-learn, an xml-based, user-device adaptive multi-agent system. Inf Sci 177(8):1729–1770

    Article  Google Scholar 

  • Debevc M, Šafarič R, Golob M (2008) Hypervideo application on an experimental control system as an approach to education. Comput Appl Eng Educ 16(1):31–44

    Article  Google Scholar 

  • De-la Fuente-Valentín L, Pardo A, Kloos C (2011) Generic service integration in adaptive learning experiences using ims learning design. Comput Educ 57(1):1160–1170

    Article  Google Scholar 

  • DMello S, Craig S, Witherspoon A, Mcdaniel B, Graesser A (2008) Automatic detection of learners affect from conversational cues. User Model User Adapt Interact 18(1):45–80

    Article  Google Scholar 

  • D’Mello S, Olney A, Williams C, Hays P (2012) Gaze tutor: a gaze-reactive intelligent tutoring system. Int J Hum Comput Stud 70(5):377–398

    Article  Google Scholar 

  • Dorça FA, Lima LV, Fernandes MA, Lopes CR (2013) Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems: an experimental analysis. Expert Syst Appl 40(6):2092–2101

  • Essalmi F, Ayed L, Jemni M, Graf S et al (2010) A fully personalization strategy of e-learning scenarios. Comput Hum Behav 26(4):581–591

    Article  Google Scholar 

  • Fernández S, Borrajo D (2012) Using linear programming to solve clustered oversubscription planning problems for designing e-courses. Expert Syst Appl 39(5):5178–5188. doi:10.1016/j.eswa.2011.11.021

    Article  Google Scholar 

  • Fernández-Breis J, Castellanos-Nieves D, Valencia-García R (2009) Measuring individual learning performance in group work from a knowledge integration perspective. Inf Sci 179(4):339–354

    Article  Google Scholar 

  • Fournier J, Sansonnet J (2008) Activetutor: towards more adaptive features in an e-learning framework. Interact Technol Smart Educ 5(3):189–204

    Article  Google Scholar 

  • García P, Amandi A, Schiaffino S, Campo M (2007) Evaluating bayesian networks precision for detecting students learning styles. Comput Educ 49(3):794–808

    Article  Google Scholar 

  • García P, Schiaffino S, Amandi A (2008) An enhanced bayesian model to detect students learning styles in web-based courses. J Comput Assist Learn 24(4):305–315

    Article  Google Scholar 

  • García E, Romero C, Ventura S, Castro C (2009) An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering. User Model User Adapt Interact 19(1):99–132

    Article  Google Scholar 

  • Gaudioso E, Montero M, Hernandez-del Olmo F (2012) Supporting teachers in adaptive educational systems through predictive models: a proof of concept. Expert Syst Appl 39(1):621–625

    Article  Google Scholar 

  • Gladun A, Rogushina J, Martínez-Béjar R, Fernández-Breis J et al (2009) An application of intelligent techniques and semantic web technologies in e-learning environments. Expert Syst Appl 36(2):1922–1931

    Article  Google Scholar 

  • Gnel K, Asliyan R (2010) Extracting learning concepts from educational texts in intelligent tutoring systems automatically. Expert Syst Appl 37(7):5017–5022

    Article  Google Scholar 

  • Gogoulou A, Gouli E, Grigoriadou M (2008) Adapting and personalizing the communication in a synchronous communication tool. J Comput Assist Learn 24(3):203–216

    Article  Google Scholar 

  • Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  • Gu R, Zhu M, Zhao L, Zhang N (2008) Interest mining in virtual learning environments. Online Inf Rev 32(2):133–146

    Article  Google Scholar 

  • Guo Q, Zhang M (2009) Implement web learning environment based on data mining. Knowl Based Syst 22(6):439–442

    Article  Google Scholar 

  • Gutierrez F, Atkinson J (2011) Adaptive feedback selection for intelligent tutoring systems. Expert Syst Appl 38(5):6146–6152. doi:10.1016/j.eswa.2010.11.058

    Article  Google Scholar 

  • Gütl C, Pivec M, Trummer C, García-Barrios V, Mödritscher F, Pripfl J, Umgeher M (2005) Adele (adaptive e-learning with eye-tracking): theoretical background, system architecture and application scenarios. Eur J Open, Distance E-Learn (EURODL)

  • Güyer T (2009) The measures weighted stratum and weighted compactness on the weighted digraph-based models of the hypermedia and navigation. Comput Educ 53(2):252–260

    Article  Google Scholar 

  • Guzmán E, Conejo R, Pérez-de-la Cruz J (2007) Adaptive testing for hierarchical student models. User Model User Adapt Interact 17(1):119–157

    Article  Google Scholar 

  • Guzman E, Conejo R, Perez-de-la Cruz J (2007) Improving student performance using self-assessment tests. Intel Syst IEEE 22(4):46–52

    Article  Google Scholar 

  • Heinemann M (2000) Adaptive learning of rational expectations using neural networks. J Econ Dyn Control 24(5):1007–1026

    Article  MATH  Google Scholar 

  • Henze N, Nejdl W (2004) A logical characterization of adaptive educational hypermedia. New Rev Hypermed Multimed 10(1):77–113

    Article  Google Scholar 

  • Heylen D, Nijholt A, op den Akker R (2005) Affect in tutoring dialogues. Appl Artif Intel 19(3–4):287–311

    Article  Google Scholar 

  • Hofmann T (2004) Latent semantic models for collaborative filtering. ACM Trans Inf Syst (TOIS) 22(1):89–115

    Article  Google Scholar 

  • Hogo M (2010) Evaluation of e-learning systems based on fuzzy clustering models and statistical tools. Expert Syst Appl 37(10):6891–6903

    Article  Google Scholar 

  • Hsiao I, Sosnovsky S, Brusilovsky P (2010) Guiding students to the right questions: adaptive navigation support in an e-learning system for java programming. J Comput Assist Learn 26(4):270–283

    Article  Google Scholar 

  • Hsieh T, Wang T (2010) A mining-based approach on discovering courses pattern for constructing suitable learning path. Expert Syst Appl 37(6):4156–4167

    Article  Google Scholar 

  • Huang W, Webster D, Wood D, Ishaya T (2006) An intelligent semantic e-learning framework using context-aware semantic web technologies. Br J Educ Technol 37(3):351–373

    Article  Google Scholar 

  • Huang CJ, Chu SS, Guan CT (2007a) Implementation and performance evaluation of parameter improvement mechanisms for intelligent e-learning systems. Comput Educ 49(3):597–614

    Article  Google Scholar 

  • Huang M, Huang H, Chen M (2007b) Constructing a personalized e-learning system based on genetic algorithm and case-based reasoning approach. Expert Syst Appl 33(3):551–564

    Article  Google Scholar 

  • Huang T, Huang Y, Cheng S (2008a) Automatic and interactive e-learning auxiliary material generation utilizing particle swarm optimization. Expert Syst Appl 35(4):2113–2122

    Article  Google Scholar 

  • Huang Y, Chen J, Huang T, Jeng Y, Kuo Y (2008b) Standardized course generation process using dynamic fuzzy petri nets. Expert Syst Appl 34(1):72–86

    Article  Google Scholar 

  • Huang Y, Lin Y, Cheng S (2009) An adaptive testing system for supporting versatile educational assessment. Comput Educ 52(1):53–67

    Article  Google Scholar 

  • Huang CJ, Chuang YT (2008) Supporting the development of collaborative problem-based learning environments with an intelligent diagnosis tool. Expert Syst Appl 35(3):622–631

    Article  Google Scholar 

  • Huang S, Shiu J (2012) A user-centric adaptive learning system for e-learning 2.0. Educ Technol Soc 15(3):214–225

    Google Scholar 

  • Huang S, Yang C (2009) Designing a semantic bliki system to support different types of knowledge and adaptive learning. Comput Educ 53(3):701–712

    Article  Google Scholar 

  • Hwang G (2003) A conceptual map model for developing intelligent tutoring systems. Comput Educ 40(3):217–235

    Article  Google Scholar 

  • Hwang GJ, Kuo FR, Yin PY, Chuang KH (2010) A heuristic algorithm for planning personalized learning paths for context-aware ubiquitous learning. Comput Educ 54(2):404–415

    Article  Google Scholar 

  • Iglesias A, Martnez P, Aler R, Fernndez F (2009) Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning. Appl Intel 31:89–106

    Article  Google Scholar 

  • Jang J, Sun C, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. MATLAB curriculum series. Prentice Hall, New York

    Google Scholar 

  • Jeong H, Choi C, Song Y (2012) Personalized learning course planner with e-learning DSS using user profile. Expert Syst Appl 39(3):2567–2577

    Article  Google Scholar 

  • Jeremić Z, Jovanović J, Gašević D (2012) Student modeling and assessment in intelligent tutoring of software patterns. Expert Syst Appl 39(1):210–222

    Article  Google Scholar 

  • Jia H, Wang M, Ran W, Yang SJ, Liao J, Chiu DK (2011) Design of a performance-oriented workplace e-learning system using ontology. Expert Syst Appl 38(4):3372–3382

    Article  Google Scholar 

  • Jiang X, Tan A (2009) Learning and inferencing in user ontology for personalized semantic web search. Inf Sci 179(16):2794–2808

    Article  MATH  Google Scholar 

  • Jong B, Chen C, Chan T, Hsia Y, Lin T (2012) Applying learning portfolios and thinking styles to adaptive remedial learning. Comput Appl Eng Educ 20(1):45–61

    Article  Google Scholar 

  • Kardan AA, Ebrahimi M (2013) A novel approach to hybrid recommendation systems based on association rules mining for content recommendation in asynchronous discussion groups. Inf Sci 219:93–110

    Article  Google Scholar 

  • Kavcic A (2004) Fuzzy user modeling for adaptation in educational hypermedia. Syst Man Cybern Part C Appl Rev IEEE Trans 34(4):439–449. doi:10.1109/TSMCC.2004.833294

    Article  Google Scholar 

  • Keleş A, Ocak R, Keleş A, Gülcü A (2009) Zosmat: web-based intelligent tutoring system for teaching-learning process. Expert Syst Appl 36(2):1229–1239

    Article  Google Scholar 

  • Kitakoshi D, Shioya H, Nakano R (2010) Empirical analysis of an on-line adaptive system using a mixture of bayesian networks. Inf Sci 180(15):2856–2874

    Article  MathSciNet  Google Scholar 

  • Klinkenberg S, Straatemeier M, Van der Maas H (2011) Computer adaptive practice of maths ability using a new item response model for on the fly ability and difficulty estimation. Comput Educ 57(2):1813–1824

    Article  Google Scholar 

  • Knutov E, De Bra P, Pechenizkiy M (2009) Ah 12 years later: a comprehensive survey of adaptive hypermedia methods and techniques. New Rev Hypermed Multimed 15(1):5–38

    Article  Google Scholar 

  • Kontopoulos E, Vrakas D, Kokkoras F, Bassiliades N, Vlahavas I (2008) An ontology-based planning system for e-course generation. Expert Syst Appl 35(1):398–406

    Article  Google Scholar 

  • Kotsiantis S (2012) Use of machine learning techniques for educational proposes: a decision support system for forecasting students grades. Artif Intel Rev 37(4):331–344

    Article  Google Scholar 

  • Kozierkiewicz-Hetmańska A (2011) A method for scenario recommendation in intelligent e-learning systems. Cybern Syst Int J 42(2):82–99

    Article  MATH  Google Scholar 

  • Kujala J, Richardson U, Lyytinen H (2010) A bayesian-optimal principle for learner-friendly adaptation in learning games. J Math Psychol 54(2):247–255

    Article  MATH  MathSciNet  Google Scholar 

  • Latham A, Crockett K, McLean D, Edmonds B (2012) A conversational intelligent tutoring system to automatically predict learning styles. Comput Educ 59(1):95–109. doi:10.1016/j.compedu.2011.11.001

    Article  Google Scholar 

  • Lau R, Song D, Li Y, Cheung T, Hao J (2009) Toward a fuzzy domain ontology extraction method for adaptive e-learning. Knowl Data Eng IEEE Trans 21(6):800–813

    Article  Google Scholar 

  • Lazarinis F (2012) A service oriented web application for learner knowledge representation, management and sharing conforming to ims lip. Educ Inf Technolo 19(2):327–344

  • Lazarinis F, Green S, Pearson E (2010) Creating personalized assessments based on learner knowledge and objectives in a hypermedia web testing application. Comput Educ 55(4):1732–1743

    Article  Google Scholar 

  • Lazcorreta E, Botella F, Fernández-Caballero A (2008) Towards personalized recommendation by two-step modified apriori data mining algorithm. Expert Syst Appl 35(3):1422–1429

    Article  Google Scholar 

  • Lee C, Lee G, Leu Y (2009a) Application of automatically constructed concept map of learning to conceptual diagnosis of e-learning. Expert Syst Appl 36(2):1675–1684

    Article  Google Scholar 

  • Lee C, Lee G, Leu Y (2009b) The effectiveness of an intelligent annotation sharing system on e-learning. Expert Syst Appl 36(3):5733–5740

    Article  Google Scholar 

  • Lee M, Chen S, Chrysostomou K, Liu X (2009c) Mining students’ behavior in web-based learning programs. Expert Syst Appl Int J 36(2):3459–3464

    Article  Google Scholar 

  • Lee M, Tsai K, Hsieh T (2011) A multi-strategy knowledge interoperability framework for heterogeneous learning objects. Expert Syst Appl 38(5):4945–4956

    Article  Google Scholar 

  • Lee Y (2012) Developing an efficient computational method that estimates the ability of students in a web-based learning environment. Comput Educ 58(1):579–589

    Article  Google Scholar 

  • Lee Y, Chong Q (2003) Multi-agent systems support for community-based learning. Interact Comput 15(1):33–55

  • Lee J, Segev A (2012) Knowledge maps for e-learning. Comput Educ 59(2):353–364

    Article  Google Scholar 

  • Legaspi R, Sison R, Fukui K, Numao M (2008) Cluster-based predictive modeling to improve pedagogic reasoning. Comput Hum Behav 24(2):153–172

    Article  Google Scholar 

  • Levy S, Wilensky U (2011) Mining students inquiry actions for understanding of complex systems. Comput Educ 56(3):556–573

    Article  Google Scholar 

  • Li J, Chang Y, Chu C, Tsai C (2012) A self-adjusting e-course generation process for personalized learning. Expert Syst Appl 39(3):3223–3232

    Article  Google Scholar 

  • Limongelli C, Sciarrone F, Temperini M, Vaste G (2009) Adaptive learning with the ls-plan system: a field evaluation. Learn Technol IEEE Trans 2(3):203–215

    Article  Google Scholar 

  • Lin J, Lai Y (2014) Using collaborative annotating and data mining on formative assessments to enhance learning efficiency. Comput Appl Eng Educ 22(2):364–374

  • Lo JJ, Chan YC, Yeh SW (2012) Designing an adaptive web-based learning system based on students’ cognitive styles identified online. Comput Educ 58(1):209–222. doi:10.1016/j.compedu.2011.08.018

    Article  Google Scholar 

  • Longpradit P, Hall W, Walters R, Gilbert L, Gee Q, Wills G (2008) An inquiry-led personalised navigation system (ipns) using multi-dimensional linkbases. New Rev Hypermed Multimed 14(1):33–55

    Article  Google Scholar 

  • Lo J, Shu P (2005) Identification of learning styles online by observing learners browsing behaviour through a neural network. Br J Educ Technol 36(1):43–55

    Article  Google Scholar 

  • Lykourentzou I, Giannoukos I, Nikolopoulos V, Mpardis G, Loumos V (2009) Dropout prediction in e-learning courses through the combination of machine learning techniques. Comput Educ 53(3):950–965

    Article  Google Scholar 

  • Marquez Vazquez JM, Ortega Ramirez JA, Gonzalez-Abril L, Velasco Morente F (2011) Designing adaptive learning itineraries using features modelling and swarm intelligence. Neural Comput Appl 20(5):623–639

    Article  Google Scholar 

  • Mdritscher F, Garca-Barrios VM, Gtl C (2004) The past, the present and the future of adaptive e-learning. In: Proceedings of the international conference on interactive computer aided learning (ICL2004)

  • Medina-Medina N, Molina-Ortiz F, García-Cabrera L (2011) Adaptation and user modeling in hypermedia learning environments using the SEM-HP model and the JSEM-HP tool. Knowl Inf Syst 29(3):629–656

    Article  Google Scholar 

  • Melia M, Pahl C (2009) Constraint-based validation of adaptive e-learning courseware. Learn Technol IEEE Trans 2(1):37–49

    Article  Google Scholar 

  • Melis E, Goguadze G, Homik M, Libbrecht P, Ullrich C, Winterstein S (2006) Semantic-aware components and services of activemath. Br J Educ Technol 37(3):405–423

    Article  Google Scholar 

  • Meng A, Ye L, Roy D, Padilla P (2007) Genetic algorithm based multi-agent system applied to test generation. Comput Educ 49(4):1205–1223

    Article  Google Scholar 

  • Michelle R, Yair L (2007) Towards a framework of biometric exam authentication in e-learning environments. In: Proceeding of the information resources management association international conference (IRMA 2007)

  • Mikic Fonte F, Burguillo J, Nistal M (2012) An intelligent tutoring module controlled by bdi agents for an e-learning platform. Expert Syst Appl

  • Molina A, Jurado F, Duque R, Redondo M, Bravo C, Ortega M (2011) Applying genetic classifier systems for the analysis of activities in collaborative learning environments. Comput Appl Eng Educ 21(4):704–716

  • Muntean C, Muntean G (2009) Open corpus architecture for personalised ubiquitous e-learning. Pers Ubiquitous Comput 13(3):197–205

    Article  Google Scholar 

  • Mussi S (2006) User profiling on the web based on deep knowledge and sequential questioning. Expert Syst 23(1):21–38

    Article  Google Scholar 

  • Novak JD (2006) The theory underlying concept maps and how to construct them. In: Technical report, Institute for Human and Machine Cognition

  • Ortigosa A, Paredes P, Rodriguez P (2010) Ah-questionnaire: an adaptive hierarchical questionnaire for learning styles. Comput Educ 54(4):999–1005

    Article  Google Scholar 

  • Özpolat E, Akar G (2009) Automatic detection of learning styles for an e-learning system. Comput Educ 53(2):355–367

    Article  Google Scholar 

  • Özyurt H, Özyurt Ö, Baki A, Güven B (2012) Integrating computerized adaptive testing into uzwebmat: implementation of individualized assessment module in an e-learning system. Expert Syst Appl 39(10):9837–9847

  • Pahl C, Kenny C (2009) Interactive correction and recommendation for computer language learning and training. Knowl Data Eng IEEE Trans 21(6):854–866

    Article  Google Scholar 

  • Papanikolaou K, Grigoriadou M, Magoulas G, Kornilakis H (2002) Towards new forms of knowledge communication: the adaptive dimension of a web-based learning environment. Comput Educ 39(4):333–360

    Article  MATH  Google Scholar 

  • Papanikolaou K, Grigoriadou M, Kornilakis H, Magoulas G (2003) Personalizing the interaction in a web-based educational hypermedia system: the case of inspire. User Model User Adapt Interact 13(3):213–267

    Article  Google Scholar 

  • Pathak J, Johnson TM, Chute CG (2009) Survey of modular ontology techniques and their applications in the biomedical domain. Integr Comput Aided Eng 16(3):225–242. http://dl.acm.org/citation.cfm?id=1576283.1576287

  • Peña Ayala A (2010) Acquisition, representation and management of user knowledge. Expert Syst Appl 37(3):2255–2264

    Article  Google Scholar 

  • Pilato G, Pirrone R, Rizzo R (2008) A kst-based system for student tutoring. Appl Artif Intel 22(4):283–308

    Article  Google Scholar 

  • Pushpa M (2012) Aco in e-learning: Towards an adaptive learning path. Int J Comput Sci Eng 4(3):458–462

  • Rasmani K, Shen Q (2006) Data-driven fuzzy rule generation and its application for student academic performance evaluation. Appl Intel 25(3):305–319

    Article  Google Scholar 

  • Reategui E, Boff E, Campbell J (2008) Personalization in an interactive learning environment through a virtual character. Comput Educ 51(2):530–544

    Article  Google Scholar 

  • Retalis S (2008) Creating adaptive e-learning board games for school settings using the ELG environment. J Univers Comput Sci 14(17):2897–2908

    Google Scholar 

  • Romero C, Ventura S, Bra P (2004) Knowledge discovery with genetic programming for providing feedback to courseware authors. User Model User Adapt Interact 14(5):425–464

    Article  Google Scholar 

  • Romero C, Ventura S, Zafra A, Bra P (2009) Applying web usage mining for personalizing hyperlinks in web-based adaptive educational systems. Comput Educ 53(3):828–840

    Article  Google Scholar 

  • Romero C, Espejo PG, Zafra A, Romero JR, Ventura S (2013) Web usage mining for predicting final marks of students that use moodle courses. Comput Appl Eng Educ 21(1):135–146

  • Ruiz-Calleja A, Vega-Gorgojo G, Asensio-Prez JI, Bote-Lorenzo ML, Gmez-Snchez E, Alario-Hoyos C (2012) A linked data approach for the discovery of educational ict tools in the web of data. Comput Educ 59(3):952–962

    Article  Google Scholar 

  • Sah M, Hall W (2012) A personalized semantic portal for enhanced user support. New Rev Hypermed Multimed 0(0):1–36

    Google Scholar 

  • Sancho P, Martínez I, Fernández-Manjón B (2005) Semantic web technologies applied to e-learning personalization in e-aula. J Univers Comput Sci 11(9):1470–1481

  • Sangineto E, Capuano N, Gaeta M, Micarelli A (2008) Adaptive course generation through learning styles representation. Univers Access Inf Soc 7(1):1–23

    Article  Google Scholar 

  • Schiaffino S, Garcia P, Amandi A (2008) eTeacher: providing personalized assistance to e-learning students. Comput Educ 51(4):1744–1754

    Article  Google Scholar 

  • Sevarac Z, Devedzic V, Jovanovic J (2012) Adaptive neuro-fuzzy pedagogical recommender. Expert Syst Appl

  • Shabajee P, McBride B, Steer D, Reynolds D (2006) A prototype semantic web-based digital content exchange for schools in singapore. Br J Educ Technol 37(3):461–477

    Article  Google Scholar 

  • Shafrir U, Etkind M (2006) e-Learning for depth in the semantic web. Br J Educ Technol 37(3):425–444

    Article  Google Scholar 

  • Stathacopoulou R, Magoulas G, Grigoriadou M, Samarakou M (2005) Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis. Inf Sci 170(2):273–307

    Article  Google Scholar 

  • Stefansson G (2004) The tutor-web: an educational system for classroom presentation, evaluation and self-study. Comput Educ 43(4):315–343

    Article  Google Scholar 

  • Steichen B, Ashman H, Wade V (2012) A comparative survey of personalised information retrieval and adaptive hypermedia techniques. Inf Process Manag 48(4):698–724

    Article  Google Scholar 

  • Tai D, Wu H, Li P (2008) Effective e-learning recommendation system based on self-organizing maps and association mining. Electron Libr 26(3):329–344

    Article  Google Scholar 

  • Thyagharajan K, Nayak R (2007) Adaptive content creation for personalized e-learning using web services. J Appl Sci Res 3(9):828–836

    Google Scholar 

  • Torre I (2009) Adaptive systems in the era of the semantic and social web, a survey. User Model User Adapt Interact 19(5):433–486. doi:10.1007/s11257-009-9067-3

    Article  Google Scholar 

  • Tseng S, Sue P, Su J, Weng J, Tsai W (2007) A new approach for constructing the concept map. Comput Educ 49(3):691–707

    Article  Google Scholar 

  • Tsiriga V, Virvou M (2004) A framework for the initialization of student models in web-based intelligent tutoring systems. User Model User Adapt Interact 14(4):289–316

    Article  Google Scholar 

  • Tzouveli P, Mylonas P, Kollias S (2008) An intelligent e-learning system based on learner profiling and learning resources adaptation. Comput Educ 51(1):224–238

    Article  Google Scholar 

  • Ullrich C, Melis E (2009) Pedagogically founded courseware generation based on HTN-planning. Expert Syst Appl 36(5):9319–9332

    Article  Google Scholar 

  • Verbert K, Ochoa X, Derntl M, Wolpers M, Pardo A, Duval E (2012) Semi-automatic assembly of learning resources. Comput Educ 59(4):1257–1272

  • Verdú E, Verdú MJ, Regueras LM, de Castro JP (2012) A genetic fuzzy expert system for automatic question classification in a competitive learning environment. Expert Syst Appl 39(8):7471–7478

  • Verdú E, Regueras LM, Verdú MJ, De Castro JP, Pérez MA (2008) An analysis of the research on adaptive learning: the next generation of e-learning. WSEAS Trans Info Sci Appl 5(6):859–868. http://dl.acm.org/citation.cfm?id=1467049.1467050

  • Vesin B, Ivanović M, Klašnja-Milićević A, Budimac Z (2012) Protus 2.0: ontology-based semantic recommendation in programming tutoring system. Expert Syst Appl 15(1):12229–12246

  • Villaverde J, Godoy D, Amandi A (2006) Learning styles’ recognition in e-learning environments with feed-forward neural networks. J Comput Assist Learn 22(3):197–206

    Article  Google Scholar 

  • Wang H, Li T, Chang C (2006) A web-based tutoring system with styles-matching strategy for spatial geometric transformation. Interact Comput 18(3):331–355

    Article  Google Scholar 

  • Wang T, Wang K, Huang Y (2008) Using a style-based ant colony system for adaptive learning. Expert Syst Appl 34(4):2449–2464

    Article  Google Scholar 

  • Wang Y, Tseng M, Liao H (2009) Data mining for adaptive learning sequence in english language instruction. Expert Syst Appl 36(4):7681–7686

    Article  Google Scholar 

  • Wang C, Wang D, Lin J (2010) Adam: an adaptive multimedia content description mechanism and its application in web-based learning. Expert Syst Appl 37(12):8639–8649

    Article  Google Scholar 

  • Wang FH (2012) On extracting recommendation knowledge for personalized web-based learning based on ant colony optimization with segmented-goal and meta-control strategies. Expert Syst Appl 39(7):6446–6453

    Article  Google Scholar 

  • Wang T, Tsai K (2009) Interactive and dynamic review course composition system utilizing contextual semantic expansion and discrete particle swarm optimization. Expert Syst Appl 36(6):9663–9673

    Article  MathSciNet  Google Scholar 

  • Wang S, Wu C (2011) Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Syst Appl 38(9):10,831–10,838

    Article  Google Scholar 

  • Weng C (2011) Mining fuzzy specific rare itemsets for education data. Knowl Based Syst 24(5):697–708

    Article  Google Scholar 

  • Witten I, Frank E, Hall M (2011) Data mining: practical machine learning tools and techniques: practical machine learning tools and techniques. the morgan kaufmann series in data management systems. Elsevier Science, Philadelphia

    Google Scholar 

  • Woo C, Evens M, Freedman R, Glass M, Shim L, Zhang Y, Zhou Y, Michael J (2006) An intelligent tutoring system that generates a natural language dialogue using dynamic multi-level planning. Artif Intel Med 38(1):25–46

    Article  Google Scholar 

  • Xu D, Wang H, Wang M (2005) A conceptual model of personalized virtual learning environments. Expert Syst Appl 29(3):525–534

    Article  Google Scholar 

  • Xu D, Wang H (2006) Intelligent agent supported personalization for virtual learning environments. Decis Support Syst 42(2):825–843

    Article  Google Scholar 

  • Yang Y, Wu C (2009) An attribute-based ant colony system for adaptive learning object recommendation. Expert Syst Appl 36(2):3034–3047

    Article  Google Scholar 

  • Yeh S, Lo J (2005) Assessing metacognitive knowledge in web-based call: a neural network approach. Comput Educ 44(2):97–113

    Article  Google Scholar 

  • Yudelson M, Medvedeva O, Crowley R (2008) A multifactor approach to student model evaluation. User Model User Adapt Interact 18(4):349–382

    Article  Google Scholar 

  • Zarikas V (2007) Modeling decisions under uncertainty in adaptive user interfaces. Univers Access Inf Soc 6(1):87–101

    Article  Google Scholar 

  • Zeng Q, Zhao Z, Liang Y (2009) Course ontology-based users knowledge requirement acquisition from behaviors within e-learning systems. Comput Educ 53(3):809–818

    Article  Google Scholar 

  • Zhuge H, Li Y (2006) Learning with an active e-course in the knowledge grid environment. Concurr Comput Pract Exp 18(3):333–356

    Article  Google Scholar 

  • Žitko B, Stankov S, Rosić M, Grubišić A (2009) Dynamic test generation over ontology-based knowledge representation in authoring shell. Expert Syst Appl 36(4):8185–8196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shahpasand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardan, A.A., Aziz, M. & Shahpasand, M. Adaptive systems: a content analysis on technical side for e-learning environments. Artif Intell Rev 44, 365–391 (2015). https://doi.org/10.1007/s10462-015-9430-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-015-9430-1

Keywords

Navigation