Artificial Intelligence Review

, Volume 42, Issue 3, pp 427–443 | Cite as

The Human Interactome Knowledge Base (HINT-KB): an integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

  • Konstantinos Theofilatos
  • Christos Dimitrakopoulos
  • Spiros Likothanassis
  • Dimitrios Kleftogiannis
  • Charalampos Moschopoulos
  • Christos Alexakos
  • Stergios Papadimitriou
  • Seferina Mavroudi
Article

Abstract

Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, calculates a set of features of interest and computes a confidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

Keywords

Protein–protein interactions Human PPI scoring methods Genetic algorithms Kalman Filters Knowledge base 

References

  1. Abdi H (2007) Discriminant correspondence analysis. In: Salkind NJ (ed) Encyclopedia of measurement and statistic. Sage, Thousand Oaks (CA), pp 270–275Google Scholar
  2. Andreeva A, Howorth D, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucl Acid Res 32:D226–D229Google Scholar
  3. Aranda B, Achuthan P, Alam-Faruque Y et al (2010) The IntAct molecular interaction database. Nucl Acids Res 38:D525–D531CrossRefGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  5. Auerbach D, Thaminy S, Hottiger MO, Stagljar I (2002) The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2:611–23CrossRefGoogle Scholar
  6. Back T, Schutz M (1996) Intelligent mutation rate control in canonical genetic algorithms. In: Proceedings of the 9th international symposium, ISMIS 96. Springer, Berlin, pp 158–167Google Scholar
  7. Bader GD, Donaldson I, Wolting C et al (2001) BIND: The Biomolecular Interaction Network Database. Nucl Acids Res 29:242–245CrossRefGoogle Scholar
  8. Barrett T, Troup D, Wilhite S et al (2011) NCBI GEO: archive for functional genomics data sets-10 years on. Nucl Acids Res 39(suppl 1):D1005–D1010CrossRefGoogle Scholar
  9. Berman H, Westbrook J, Feng Z et al (2000) The protein data bank. Nucl Acids Res 28(1):235–242CrossRefGoogle Scholar
  10. Box FJ (1987) Guinness, gosset, fisher, and small samples. Stat Sci 2(1):45–52MathSciNetCrossRefGoogle Scholar
  11. Breiman L (2001) Random forests. Mach Learn J 45:5–32CrossRefMATHGoogle Scholar
  12. Breukelaar R and Baeck T (2008) Self-adaptive mutation rates in genetic algorithm for inverse design of cellular automata. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, July 12–16, Atlanta, GA, USA. doi:10.1145/1389095.1389298
  13. Chatrayamontri A, Ceol A, Palazzi LM et al (2007) MINT: The Molecular INTeraction database. Nucl Acids Res 35:D572–D574CrossRefGoogle Scholar
  14. Chen P, Li J (2010) Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information. BMC Bioinformatics 11:402Google Scholar
  15. Chen X, Liu M (2005) Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21:4394–4400CrossRefGoogle Scholar
  16. Demiris EN, Likothanassis SD, Beligiannis GN, Adamopoulos A (2000) Nonlinear AR model identification with unknown process order. In: Proceedings IEEE international symposium intelligent signal processing and communication systems (ISPACS), pp 777–782Google Scholar
  17. Dimitrakopoulos CM, Theofilatos KA, Georgopoulos EF et al (2011) Efficient computational construction of weighted protein–protein interaction networks using adaptive filtering techniques combined with natural-selection based heuristic algorithms. Int J Syst Biol Biomed Technol (IJSBBT) 1(2):20–34Google Scholar
  18. Diniz PS (2002) Adaptive filtering: algorithms and practical implementation. Springer, BerlinGoogle Scholar
  19. Dotan-Cohen D, Letovsky S, Melkman AA, Kasif S (2009) Biological process linkage networks. PLoS ONE 4(4):e5313. doi:10.1371/journal.pone.0005313 CrossRefGoogle Scholar
  20. Finn RD, Mistry J, Schuster-Bockler B et al (2006) Pfam: clans, web tools and services. Nucl Acids Res 34:D247–D251CrossRefGoogle Scholar
  21. Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucl Acids Res 35(Database issue):D291–D297Google Scholar
  22. Holland J (1995) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, CambridgeGoogle Scholar
  23. Hunter S, Apweiler R, Attowood TK et al (2009) InterPro: the integrative protein signature database. Nucl Acids Res 37:D211–D215CrossRefGoogle Scholar
  24. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human Protein Reference Database-2009 update. Nucl Acids Res 37:D767–D772CrossRefGoogle Scholar
  25. Kumar A, Snyder M (2002) Protein complexes take the bait. Nature 340:245–46Google Scholar
  26. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763Google Scholar
  27. Moschopoulos CN, Pavlopoulos GA, Schneider R et al (2009) GIBA: a clustering tool for detecting protein complexes. BMC Bioinform 10(Suppl 6):S11CrossRefGoogle Scholar
  28. Lehne B, Schlitt (2009) The protein–protein interaction databases: keeping up with growing interactomes. Human Genomics 3(3):291–297Google Scholar
  29. Liu Y, Kim I, Zhao H (2008) Protein interaction predictions from diverse sources. Drug Discov Today 13:409–416CrossRefGoogle Scholar
  30. O’brien KP, Remm M, Sonnhammer ELL (2005) Inparanoid: a comprehensive database of eykaryotic orthologs. Nucl Acids Res 33:D476–D480CrossRefGoogle Scholar
  31. Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein–protein interaction database. Bioinformatics 21:832–834CrossRefGoogle Scholar
  32. Puig O, Caspary F, Rigaut G et al (2001) The Tandem Affinity Purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229CrossRefGoogle Scholar
  33. Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinform 9(1):405CrossRefGoogle Scholar
  34. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefGoogle Scholar
  35. Scott MS, Thomas DY, Hallett MT (2004) Predicting sucellular localization via protein motif co-occurrence. Genome Res 14(10A):1957–1966CrossRefGoogle Scholar
  36. Scott M, Barton G (2007) Probabilistic prediction and ranking of human protein–protein interactions. BMC Bioinform 8:239CrossRefGoogle Scholar
  37. Stark C, Breitkreutz B, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucl Acids Res 34:D535–D539CrossRefGoogle Scholar
  38. Szlarczyk D, Franceschini A, Kuhn M et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl Acids Res 39:D561–D568CrossRefGoogle Scholar
  39. Thahir M, Jaime C, Madhavi G (2010) Active learning for human protein–protein interaction prediction. BMC Bioinform 11(1):S57CrossRefGoogle Scholar
  40. Theofilatos KA, Dimitrakopoulos CM, Tsakalidis AK et al (2011) Computational approaches for the prediction of protein–protein interactions: a survey. Curr Bioinform 6(4):398–414CrossRefGoogle Scholar
  41. Theofilatos KA, Dimitrakopoulos CM, Tsakalidis AK et al (2010) A new hybrid method for predicting protein interactions using Genetic Algorithms and Extended Kalman Filters. In: Proceedings of the IEEE/EMBS Region 8 international conference on information technology applications in biomedicine (ITAB) art. no. 5687765, doi:10.1109/ITAB.2010.5687765
  42. The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucl Acids Res 40:D71–D75Google Scholar
  43. Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520–525CrossRefGoogle Scholar
  44. Urquiza J, Tojas I, Romare H et al (2011) Method for prediction of protein–protein interactions in yeast using genomics/proteomics information and feature selection. Neurocomputing 74(2683):2690Google Scholar
  45. Urquiza J, Rojas I, Romares H et al (2012) Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification. Comput Biol Med 42:639–650CrossRefGoogle Scholar
  46. Wang B (2007) Prediction of protein interactions by combining genetic algorithm with SVM method. In: Proceedings of the IEEE congress on evolutionary computation, pp 320–325Google Scholar
  47. Wang B, Chen P et al (2010) Inferring protein–protein interactions using a Hybrid Genetic Algorithm/Support Vector Machine Method. Protein Pept Lett 17:1079–1084CrossRefGoogle Scholar
  48. Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, Chapel HillGoogle Scholar
  49. Veenman CJ, Tax DM (2005) LESS: a model-based classifier for sparse subspaces. IEEE Trans Pattern Anal Mach Intell 27(9):1496–1500Google Scholar
  50. Von Mering C, Krause R, Snel B (2002) Comparative assessment of large data sets of protein–protein interactions. Nature 417(6887):399–403CrossRefGoogle Scholar
  51. Xenarios I, Salwinski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl Acids Res 30:303–305CrossRefGoogle Scholar
  52. Zhang Q, Petrey D, Garzon J et al (2012) PrePPI: a structure-informed database of protein-protein interactions. Nucl Acids Res. doi:10.1093/nar/gks1231

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Konstantinos Theofilatos
    • 1
  • Christos Dimitrakopoulos
    • 1
  • Spiros Likothanassis
    • 1
  • Dimitrios Kleftogiannis
    • 2
  • Charalampos Moschopoulos
    • 3
    • 4
  • Christos Alexakos
    • 1
  • Stergios Papadimitriou
    • 5
  • Seferina Mavroudi
    • 6
    • 1
  1. 1.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece
  2. 2.King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE)ThuwalSaudi Arabia
  3. 3.Department of Electrical Engineering-ESATSCD-SISTA, Katholieke Universiteit LeuvenHeverleeBelgium
  4. 4.iMinds Future Health DepartmentKatholieke Universiteit LeuvenHeverleeBelgium
  5. 5.Department of Computer Engineering and InformaticsTechnological Institute of KavalaKavalaGreece
  6. 6.Department of Social Work, School of Sciences of Health and CareTechnological Educational Institute of PatrasPatrasGreece

Personalised recommendations