Artificial Intelligence Review

, Volume 43, Issue 2, pp 243–258 | Cite as

Particle swarm optimisation for discrete optimisation problems: a review

Article

Abstract

In many optimisation problems, all or some of decision variables are discrete. Solving such problems are more challenging than those problems with pure continuous variables. Among various optimisation techniques, particle swarm optimisation (PSO) has demonstrated more promising performance in tackling discrete optimisation problems. In PSO, basic variants are merely applicable to continuous problems. So, appropriate strategies should be adopted for enabling them to be applicable to discrete problems. This paper analyses all strategies adopted in PSO for tackling discrete problems and discusses thoroughly about pros and cons of each strategy.

Keywords

Particle swarm optimisation Optimisation Discrete environments 

References

  1. Abdelaziz A, Mohammed F, Mekhamer S, Badr M (2009) Distribution Systems Reconfiguration using a modified particle swarm optimization algorithm. Electr Power Syst Res 79(11):1521–1530CrossRefGoogle Scholar
  2. Afshinmanesh F, Marandi A, Rahimi-Kian A (2005) A novel binary particle swarm optimization method using artificial immune system. In: IEEE, pp 217–220Google Scholar
  3. Al-Kazemi B, Mohan C (2005) Discrete multi-phase particle swarm optimization. Inf Process Evol Algorithms, 305–327Google Scholar
  4. AlRashidi M, El-Hawary M (2007) Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans Power Syst 22(4):2030–2038CrossRefGoogle Scholar
  5. Chang R, Lu C (2002) Feeder reconfiguration for load factor improvement. In: IEEE, vol 982, pp 980–984Google Scholar
  6. Chen WN, Zhang J, Chung HSH, Zhong WL, Wu WG, Shi YH (2010) A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14(2):278–300Google Scholar
  7. Clerc M (2004) Discrete particle swarm optimization illustrated by the traveling salesman problem. New Optim Tech Eng 141:219–239CrossRefGoogle Scholar
  8. Deligkaris KV, Zaharis ZD, Kampitaki DG, Goudos SK, Rekanos IT, Spasos MN (2009) Thinned planar array design using Boolean PSO with velocity mutation. IEEE Trans Magn 45(3):1490–1493CrossRefGoogle Scholar
  9. Eajal AA, El-Hawary M (2010) Optimal capacitor placement and sizing in unbalanced distribution systems with harmonics consideration using particle swarm optimization. IEEE Trans Power Deliv 25(3):1734–1741Google Scholar
  10. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier, AmsterdamGoogle Scholar
  11. Fukuyama Y (2001) State estimation and optimal setting of voltage regulator in distribution systems. In: IEEE, vol 932, pp 930–935Google Scholar
  12. Hoffmann M, MA1/4hlenthaler M, Helwig S, Wanka R (2011) Discrete particle swarm optimization for TSP: theoretical results and experimental evaluations. Adapt Intell Syst, 416–427Google Scholar
  13. Jin YX, Cheng HZ, Yan J, Zhang L (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr Power Syst Res 77(3):227–233CrossRefGoogle Scholar
  14. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on, proceedings neural networks, Nov/Dec 1995, vol 1944 . pp 1942–1948. doi:10.1109/icnn.1995.488968
  15. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE, vol. 4105, pp 4104–4108Google Scholar
  16. Khalil TM, Youssef HKM, Aziz MMA (2006) A binary particle swarm optimization for optimal placement and sizing of capacitor banks in radial distribution feeders with distorted substation voltages. TM Khalil, HKM Youseef, MM Abdel Aziz, 129–135Google Scholar
  17. Kitayama S, Yasuda K (2006) A method for mixed integer programming problems by particle swarm optimization. Electr Eng Jpn 157(2):40–49CrossRefGoogle Scholar
  18. Kitayama S, Arakawa M, Yamazaki K (2006) Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization. Struct Multidiscip Optim 32(3):191–202CrossRefMATHMathSciNetGoogle Scholar
  19. Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. In: IEEE, pp 1582–1587Google Scholar
  20. Li D, Wang B, KitaYama S, Yamazaki K, Arakawa M (2005) Application of particle swarm optimization to the mixed discrete non-linear problems. In: Artificial intelligence applications and innovations, vol 187. IFIP—The International Federation for Information Processing. Springer, USA, pp 315–324. doi:10.1007/0-387-29295-0_34
  21. Li X, Tian P, Hua J, Zhong N (2006) A hybrid discrete particle swarm optimization for the traveling salesman problem. Simul Evol Learn, 181–188Google Scholar
  22. Liao CJ, Tseng CT, Luarn P (2007) A discrete version of particle swarm optimization for flowshop scheduling problems. Comput Oper Res 34(10):3099–3111CrossRefMATHGoogle Scholar
  23. Liu Y, Gu X (2007) Skeleton-network reconfiguration based on topological characteristics of scale-free networks and discrete particle swarm optimization. IEEE Trans Power Syst 22(3):1267–1274CrossRefGoogle Scholar
  24. Liu W, Liu L, Cartes DA (2007) Angle modulated particle swarm optimization based defensive islanding of large scale power systems. In: IEEE, pp 1–8Google Scholar
  25. Liu H, Liu X, Wang Q (2009) Routing optimization for dispatching vehicles based on an improved discrete particle swarm optimization algorithm with mutation operation. In: IEEE, pp 624–627Google Scholar
  26. Marandi A, Afshinmanesh F, Shahabadi M, Bahrami F (2006) Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna. In: IEEE, pp 3212–3218Google Scholar
  27. Moradi A, Fotuhi-Firuzabad M (2008) Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans Power Deliv 23(1):271–279CrossRefGoogle Scholar
  28. Nema S, Goulermas J, Sparrow G, Cook P (2008) A hybrid particle swarm branch-and-bound (HPB) optimizer for mixed discrete nonlinear programming. IEEE Trans Syst Man Cybern Part A Syst Hum 38(6):1411–1424CrossRefGoogle Scholar
  29. Niasar NS, Shanbezade J, Perdam M, Mohajeri M (2009) Discrete fuzzy particle swarm optimization for solving traveling salesman problem. In: IEEE, pp 162–165Google Scholar
  30. Onate Yumbla PE, Ramirez JM (2008) Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans Power Syst 23(1):33–40CrossRefGoogle Scholar
  31. Pampara G, Franken N, Engelbrecht A (2005) Combining particle swarm optimisation with angle modulation to solve binary problems. In: IEEE, vol. 81, pp 89–96Google Scholar
  32. Pan QK, Fatih Tasgetiren M (2008) A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput Oper Res 35(9):2807–2839CrossRefMATHMathSciNetGoogle Scholar
  33. Pang W, Wang K, Zhou C, Dong L (2004a) Fuzzy discrete particle swarm optimization for solving traveling salesman problem. In: IEEE, pp 796–800Google Scholar
  34. Pang W, Wang KP, Zhou CG, Dong LJ, Liu M, Zhang HY, Wang JY (2004b) Modified particle swarm optimization based on space transformation for solving traveling salesman problem. In: IEEE, vol 2344, pp 2342–2346Google Scholar
  35. Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1(2):235–306CrossRefMATHMathSciNetGoogle Scholar
  36. Qin J, Li X, Yin Y (2011) An algorithmic framework of discrete particle swarm optimization. Appl Soft ComputGoogle Scholar
  37. Robinson DG (2005) Reliability analysis of bulk power systems using swarm intelligence. In: IEEE, pp 96–102Google Scholar
  38. Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment problem. Microprocess Microsyst 26(8):363–371CrossRefGoogle Scholar
  39. Sha D, Hsu CY (2006) A hybrid particle swarm optimization for job shop scheduling problem. Comput Ind Eng 51(4):791–808CrossRefGoogle Scholar
  40. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on, evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence, 4–9 May 1998. pp 69–73. doi:10.1109/icec.1998.699146
  41. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on, evolutionary computation, 1999. CEC 99, 1999, vol 1953, p 1950. doi:10.1109/cec.1999.785511
  42. Shuyuan Y, Min W, Licheng j (2004) A quantum particle swarm optimization. In: Congress on, evolutionary computation, CEC2004. 19–23 June 2004, vol. 321, pp 320–324. doi:10.1109/cec.2004.1330874
  43. Sivanagaraju S, Rao JV, Raju PS (2008) Discrete particle swarm optimization to network reconfiguration for loss reduction and load balancing. Electr Power Compon Syst 36(5):513–524CrossRefGoogle Scholar
  44. Tao Q, Chang H, Yi Y, Gu C, Li W (2010) A novel cyclic discrete optimization framework for particle swarm optimization. Adv Intell Comput Theories Appl, 166–174Google Scholar
  45. Tasgetiren MF, Suganthan P, Pan QQ (2007) A discrete particle swarm optimization algorithm for the generalized traveling salesman problem. In: ACM, pp 158–167Google Scholar
  46. Ting T, Rao M, Loo C (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418CrossRefGoogle Scholar
  47. Venter G, Sobieszczanski-Sobieski J (2004) Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct Multidiscip Optim 26(1):121–131CrossRefGoogle Scholar
  48. Wang J (2007) A novel discrete particle swarm optimization based on estimation of distribution. Adv Intell Comput Theories Appl Aspects Artif Intell, 791–802Google Scholar
  49. Wu WC, Tsai MS (2011) Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration. IEEE Trans Power Syst, (99):1–9Google Scholar
  50. Wu WC, Tsai MS (2008) Feeder reconfiguration using binary coding particle swarm optimization. Int J Control Autom Syst 6(4):488–494Google Scholar
  51. Yare Y, Venayagamoorthy GK (2007) Optimal scheduling of generator maintenance using modified discrete particle swarm optimization. In: IEEE, pp 1–8Google Scholar
  52. Yin SA, Lu CN (2009) Distribution feeder scheduling considering variable load profile and outage costs. IEEE Trans Power Syst 24(2):652–660CrossRefMathSciNetGoogle Scholar
  53. Yoshida H, Kawata K, Fukuyama Y, Takayama S, Nakanishi Y (2000) A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans Power Syst 15(4):1232–1239CrossRefGoogle Scholar
  54. Yue-Jiao G, Jun Z, Ou L, Rui-Zhang H, Chung HSH, Yu-Hui S (2012) Optimizing the vehicle routing problem with time windows: a discrete particle swarm optimization approach. IEEE Trans Syst Man Cybern Part C Appl Rev 42(2):254–267. doi:10.1109/tsmcc.2011.2148712 Google Scholar
  55. Zhang WJ, Xie XF (2003) DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE, vol 3814, pp 3816–3821Google Scholar
  56. Ziari I, Jalilian A A new approach for allocation and sizing of multiple active power-line conditioners. IEEE Trans Power Deliv 25(2):1026–1035Google Scholar
  57. Ziari I, Ledwich G, Ghosh A, Platt G (2012) Integrated distribution systems planning to improve reliability under load growth. IEEE Trans Power Del (99):1–1Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity Putra MalaysiaSelangorMalaysia

Personalised recommendations