Skip to main content

Performance divergence with data discrepancy: a review


With rapid increase in disease variety, the role of image segmentation has been crucial in image guided surgery. Despite having a lot of existing methods, the robustness of an algorithm remains a concern with respect to the input image variety. This paper presents a state of art segmentation algorithms of “MICCAI Grand Challenge and Conference 2007, 2008 and 2009”. These algorithms are reported to have tested on real datasets used in “MICCAI Grand Challenge 2007, 2008 and 2009”. Due to the page constraint, selected papers based on some criteria are included in this review. In this work, we have implemented and evaluated all these methods on a particular data. The objective of this paper is to exhibit the divergence in performance if the input data is varied.

This is a preview of subscription content, access via your institution.


  • Adamsm R, Bischop L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16: 641–647

    Article  Google Scholar 

  • Awate S, Tasdizen T, Foster N, Whitaker R (2006) Adaptive markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Med Image Anal 10: 726–739

    Article  Google Scholar 

  • Beichel G, Gotschuli R, Sorantin E (2002) Diaphragm dome surface segmentation in CT data sets : a 3D active appearance model approach. Prog Biomed Optics Imaging 3: 475–484

    Google Scholar 

  • Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Boykov Y, Veksler O, Zabih R (1998) Markov random fields with efficient approximations. In: IEEE Conference on computer vision and pattern recognition, pp 648–655

  • Casselles R, Kimmel V, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22: 61–79

    Article  Google Scholar 

  • Choudhary A, Moretto N, Ferrarese F, Zamboni G (2008) An entropy based multi-thresholding method for semi-automatic segmentation of liver tumors. In: 3D segmentation in the clinic: a grand challenge

  • Coifman R, Maggioni M (2006) Disffusion wavelets. Appl Comput Harmon Anal 21: 53–94

    Article  MathSciNet  MATH  Google Scholar 

  • Conners R, Harlow C (1980) A theoretical comparison of texture algorithms. IEEE Trans Pattern Anal Mach Intell 2: 205–222

    Google Scholar 

  • Cootes T, Edwards G, Taylar C (1998) Active appearance models. Eur Conf Comput Vis 2: 484–498

    Google Scholar 

  • Cootes T, Hill A, Taylor C, Haslam J (1994) The use of active shape models for locating structures in medical images. Image Vis Comput 12: 355–365

    Article  Google Scholar 

  • Cootes T, Taylor C, Cooper D, Graham J (1995) Active shape model—their training and application. Comput Vis Image Underst 61: 38–59

    Article  Google Scholar 

  • Cox I, Hingorani S (1995) Dynamic histogram warping of image pairs for constant image brightness. In: ICIP, Washington, DC, USA, pp 366–369

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. University of Cambridge, Cambridge

    Book  Google Scholar 

  • 3D segmentation in the clinic: a grand challenge II. MICCAI, 2007. [Online]. Available:

  • Dakua S, Sahambi J (2010) Automatic contour extraction of multi-labeled left ventricle from CMR images using CB and random walk approach. Cardiovasc Eng 10: 30–43

    Article  Google Scholar 

  • Dakua S, Sahambi S (2011) Modified active contour model and random walk approach for left ventricular cardiac MR image segmentation. Int J Numer Methods Biomed Eng 27: 1351–1361

    MathSciNet  Google Scholar 

  • Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26: 297–302

    Article  Google Scholar 

  • Dijkstra E (1959) A note on two problems in connexion with graph. Numer Math 1: 269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Duchon Z (1977) Splines minimizing rotation invariant semi-norms in Sobolev spaces. Lect Notes Math 57: 85–100

    Article  MathSciNet  Google Scholar 

  • Essafi S, Langsand G, Paragios N (2009) Left ventricle segmentation using diffusion wavelets and boosting. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 919–926(1977)

  • Fasel J, Gailloud P, Terrier F, Mentha G, Sprumont P (1996) Segmental anatomy of the liver: a review and proposal for an international working nomenclature. Eur Radiol 6: 834–837

    Article  Google Scholar 

  • Fishman E, Kuszyk B, Heath D, LG , Cabral B (1996) Surgical planning for liver resection. Computer 29(1): 64–72

    Article  Google Scholar 

  • Florin C, Paragios N, Williams J (2005) Particle filters, a quasi-Monte Carlo solution for segmentation of coronaries. In: MICCAI’05, pp 246–253

  • Frangi A, Rueckert D, Schnabel J, Niessen W (2002) Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 21: 1151–1166

    Article  Google Scholar 

  • Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55: 119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Gerig M, Chakos M, Niessen W, Viergever M (2001) A new validation tool for assessing and improving 3D object segmentation. In: MICCAI 2001. LNCS, vol 2208. Springer, Berlin, pp 516–523

  • Gonzalez RC, Wintz P (1987) Digital image processing, 2nd edn. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Grossmann E (2004) Adatree: boosting a weak classifier into a decision tree. In: CVPR workshop on learning in computer vision and pattern recognition 2004

  • Heimann T et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28: 1251–1265

    Article  Google Scholar 

  • Horikawa T, Furuhashi S, Uchikawa Y (1992) On fuzzy modeling using fuzzy nural network with the back propagation algorithm. IEEE Trans Neural Netw 5: 801–806

    Article  Google Scholar 

  • Hu E, Hoffman S, Reinhardt J (2001) Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 20: 490–498

    Article  Google Scholar 

  • Jolly M (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. In: MICCAI 2008, Part I, LNCS, vol 5241. Springer, Heidelberg, pp 110–118

  • Jolly M, Xue H, Grady L, Guehring J (2009) Combining registration and minimum surfaces for the segmentation of thjolly09e left ventricle in cardiac cine mr images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 910–918

  • Kainmuller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: 3D Segmentation in the clinic: a grand challenge, pp 109–116

  • Kullback S (1968) Information theory and statistics. Dover Publications, New York

    Google Scholar 

  • Lesage D, Angelini E, Bloch I, Funka-Lea G (2009) Bayesian maximal paths for coronary artery segmentation from 3D CT angiograms. In: MICCAI 2009, Part I, LNCS, vol 5761, pp 222–229(1968)

  • Li C, Lee C (1993) Minimum cross entropy thresholding. Pattern Recogn 26: 617–625

    Article  Google Scholar 

  • Li J, Sun Y, Tang C (2004) Lazy snapping. ACM Trans Graph 23: 303–308

    Article  Google Scholar 

  • Linguraru M, Sandberg J, Li Z, Pura J, Summers R (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1001–1008

  • Lowe D (2004) Distinctive image features from scale invariant keypoints. Int J Comput Vis 60: 91–110

    Article  Google Scholar 

  • Lu L, Wolf M, Liang J, Dundar M, Bi J, Salganicoff M (2009) A two-level approach towards semantic colon segmentation: removing extra-colonic findings. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1009–1016

  • Nugroho H, Ihtatho D (2008) Contrast enhancement for liver tumor identification. In: 3D segmentation in the clinic: a grand challenge

  • Okada T, Yokota K, Hori M, Nakamoto M, Nakamura H, Sato Y (2008) Construction of hierarchical multi-organ statistical atlases and their application to multiorgan segmentation from CT images. In: MICCAI 2008, Part I, LNCS, vol 5241. Springer, Heidelberg, pp 502–509

  • Parada M, Noble J (2000) 2D+T acoustic boundary detection in echocardiography. Med Image Anal 4: 21–31

    Article  Google Scholar 

  • Rajpoot K, Noble J, Grau V, Szmigielski C, Becher H (2009) Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 893–900

  • Rikxoort E, Prokop M, Hoop B, Viergever M, Pluim J, Ginneken B (2009) Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data. In: MICCAI 2009, Part I, LNCS, vol 5761, pp 263–271

  • Ross J, Estepar R, Diaz S, Westin C, Kikinis R, Silverman E, Washko G (2009) Lung extraction, lobe segmentation and hierarchical region assessment for quantitative analysis on high resolution computed tomography images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 690–698

  • Rusko L, Bekes G, Nemeth G, Fidrich M (2007) Fully automatic liver segmentation for contrast-enhanced CT images. In: 3D Segmentation in the clinic: a grand challenge, pp 143–150

  • Schmidt G, Athelogou M, Schonmeyer R, Korn R, Binnig G (2007) Cognition network technology for a fully automated 3D segmentation of liver. In: Workshop in 3D segmentation in the clinic: a grand challenge, vol 1. MICCAI, pp 125–134

  • Schmidt G, Binnig G, Kietzmann M, Kim J (2008) Cognition network technology for a fully automated 3D segmentation of liver tumors. In: 3D segmentation in the clinic: a grand challenge. MICCAI

  • Shen T, Huang X (2009) 3D medical image segmentation by multiple-surface active volume models. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 1059–1066

  • Shimizu A, Narihira T, Furukawa D, Kobatake H, Nawano S, Shinozaki K (2008) Ensemble segmentation using AdaBoost with application to liver lesion extraction from a CT volume. In: 3D segmentation in the clinic: a grand challenge

  • Smeets D, Stijnen B, Loeckx D, Dobbelaer B, Suetens P (2008) Segmentation of liver metastases using a level set method with spiral-scanning technique and supervised fuzzy pixel classification. In: 3D segmentation in the clinic: a grand challenge

  • Song Z, Awate S, Licht D, Gee J (2007) Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. In: MICCAI 2007, Part I, LNCS, vol 4791. Springer, Heidelberg, pp 883–890

  • Stawiaski J, Decenciere E, Bidault F (2008) Interactive liver tumor segmentation using graph-cuts and watershed. In: 3D segmentation in the clinic: a grand challenge

  • Tao Y, Lu L, Dewan M, Chen A, Corso J, Xuan J, Salganicoff M, Krishnan A (2009) Multi-level ground glass nodule detection and segmentation in CT lung images. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 715–723

  • Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson W, Willsky A (2003) A shape based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22: 137–154

    Article  Google Scholar 

  • Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13: 583–598

    Article  Google Scholar 

  • Wang J, Engelmann R, Li Q (2007) Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique. Med Phys 34: 4678–4689

    Article  Google Scholar 

  • Wels M, Zheng Y, Carneiro G, Huber M, Hornegger J, Comaniciu D (2009) Fast and robust 3D MRI brain structure segmentation. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 575–583

  • Wong D, Liu J, Yin F, Tian Q, Xiong W, Zhou J, Qi Y, Han T, Venkatesh S, Wang S (2008) A semi-automated method for liver tumor segmentation based on 2D region growing with knowledge-based constraints. In: 3D Segmentation in the Clinic: a grand challenge

  • Yokota F, Okada T, Takao M, Sugano N, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. In: MICCAI 2009, Part II, LNCS, vol 5762, pp 811–818

  • Yushkevich P, Piven J, Hazlett H, Smith R, Ho S, Gee J, Gerig G (2006) User guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31: 1116–1128

    Article  Google Scholar 

  • Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27: 1668–1681

    Article  Google Scholar 

  • Zhou J, Xiong W, Tian Q, Qi Y, Liu J, Leow W, Han T, Venkatesh S, Wang S (2008) Semi-automatic segmentation of 3D liver tumors from CT scans using voxel classification and propagational learning. In: 3D segmentation in the clinic: a grand challenge

  • Zhu J, Rosset S, Hastie T, Tibshirani R (2003) 1-norm support vector machines. In: Neural information processing systems. MIT Press, 2003, p 16

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sarada Prasad Dakua.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dakua, S.P. Performance divergence with data discrepancy: a review. Artif Intell Rev 40, 429–455 (2013).

Download citation

  • Published:

  • Issue Date:

  • DOI: