Skip to main content
Log in

Incremental K-clique clustering in dynamic social networks

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Clustering entities into dense parts is an important issue in social network analysis. Real social networks usually evolve over time and it remains a problem to efficiently cluster dynamic social networks. In this paper, a dynamic social network is modeled as an initial graph with an infinite change stream, called change stream model, which naturally eliminates the parameter setting problem of snapshot graph model. Based on the change stream model, the incremental version of a well known k-clique clustering problem is studied and incremental k-clique clustering algorithms are proposed based on local DFS (depth first search) forest updating technique. It is theoretically proved that the proposed algorithms outperform corresponding static ones and incremental spectral clustering algorithm in terms of time complexity. The practical performances of our algorithms are extensively evaluated and compared with the baseline algorithms on ENRON and DBLP datasets. Experimental results show that incremental k-clique clustering algorithms are much more efficient than corresponding static ones, and have no accumulating errors that incremental spectral clustering algorithm has and can capture the evolving details of the clusters that snapshot graph model based algorithms miss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abello J, Resende MGC, Sudarsky S (2002) Massive quasi-clique detection. In: LATIN, pp 598–612

  • Airoldi EM, Blei DM, Fienberg SE, Xing EP (2008) Mixed membership stochastic blockmodels. J Mach Learn Res 9(6): 1981–2014

    MATH  Google Scholar 

  • Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for characterizing the evolutionary behavior of interaction. In: KDD, pp 913–921

  • Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16(9): 575–577

    Article  MATH  Google Scholar 

  • Bron C, Kerbosch J (2009) A particle-and-density based evolutionary clustering method for dynamic networks. PVLDB 2(1): 622–633

    Google Scholar 

  • Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: KDD, pp 554–560

  • Chi Y, Song X, Zhou D, Hino K, Tseng B (2007) Evolutionary spectral clustering by incorporating temporal smoothness. In: KDD, pp 153–162

  • Cohn D, Chang H (2000) Learning to probabilistically identify authoritative documents. In: ICML, pp 167–174

  • Derenyi I, Palla G, Vicsek T (2005) Clique percolation in random networks. Phys Rev Lett 94(16): 160–202

    Article  Google Scholar 

  • Du N, Wang B, Wu B, Wang Y (2008) Overlapping community detection in bipartite networks. In: WIC, pp 176–179

  • Duan D, Li Y, Jin Y, Lu Z (2009) Community mining on dynamic weighted directed graphs. In: CNIKM, pp 11–18

  • Etsuji Tomita A, Tanaka HT (2004) The worst-case time complexity for generating all maximal cliques and computational experiments. Theor Comput Sci 363: 28–42

    Article  Google Scholar 

  • Everett MG, Borgatti SP (1998) Analyzing clique overlap. Connections 21(1): 49–61

    Google Scholar 

  • Farkas IJ, Abel D, Palla G, Vicsek T (2007) Weighted network modules. New J Phys 9(6): 180

    Article  Google Scholar 

  • Frederickson GN (1983) Data structures for online updating of minimum spanning trees. In: SOTC, pp 252–257

  • Girvan M, Newman M (2002) Community structure in social and biological networks. PNAS 99(12): 7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Görke R, Hartmann T, Wagner D (2009) Dynamic graph clustering using minimum-cut trees. In: WADS, pp 339–350

  • Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: ASONAM, pp 176–183

  • Hofmann T (1999) Probabilistic latent semantic analysis. In: UAI, pp 289–296

  • Lehmann S, Schwartz M, Hansen LK (2008) Biclique communities. Phys Rev E 78(1): 016–108

    Article  MathSciNet  Google Scholar 

  • Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2009) Analyzing communities and their evolutions in dynamic social networks. TKDD 3(2): 1–31

    Article  Google Scholar 

  • Lin YR, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) Metafac: community discovery via relational hypergraph factorization. In: KDD, pp 527–536

  • Newman MEJ (2006) Modularity and community structure in networks. In: PNAS, pp 8577–8582

  • Ning H, Xu W, Chi Y, Gong Y, Huang T (2010) Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recogn 43(1): 113–127

    Article  MATH  Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043): 814–818

    Article  Google Scholar 

  • Palla G, Barabasi A, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136): 664–667

    Article  Google Scholar 

  • Saha B, Mitra P (2006) Dynamic algorithm for graph clustering using minimum cut tree. In: ICDM workshops, pp 667–671

  • Shi J, Malik J (1997) Normalized cuts and image segmentation. In: CVPR’97, pp 731–737

  • Sun J, Papadimitriou S, Yu P, Faloutsos C (2007) Graphscope: Parameter-free mining of large time-evolving graphs. In: KDD, pp 687–696

  • Sun Y, Yu Y, Han J (2009) Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD, pp 797–806

  • Sun Y, Tang J, Han J, Gupta M, Zhao B (2010) Community evolution detection in dynamic heterogeneous information networks. In: MLG-KDD, pp 137–146

  • Tang L, Liu H, Zhang J, Nazeri Z (2008) Community evolution in dynamic multi-mode networks. In: KDD, pp 677–685

  • Tantipathananandh C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: KDD, pp 717–726

  • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4): 395–416

    Article  MathSciNet  Google Scholar 

  • Yang T, Chi Y, Zhu S, Gong Y, Jin R (2009) A bayesian approach toward finding communities and their evolutions in dynamic social networks. In: SDM, pp 990–1001

  • Yang T, Chi Y, Zhu S, Gong Y, Jin R (2010) Directed network community detection: a popularity and productivity link model. In: SDM, pp 742–753

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, D., Li, Y., Li, R. et al. Incremental K-clique clustering in dynamic social networks. Artif Intell Rev 38, 129–147 (2012). https://doi.org/10.1007/s10462-011-9250-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-011-9250-x

Keywords

Navigation