Skip to main content
Log in

Survey on liver CT image segmentation methods

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript


The segmentation of liver using computed tomography (CT) data has gained a lot of importance in the medical image processing field. In this paper, we present a survey on liver segmentation methods and techniques using CT images, recent methods presented in the literature to obtain liver segmentation are viewed. Generally, liver segmentation methods are divided into two main classes, semi-automatic and fully automatic methods, under each of these two categories, several methods, approaches, related issues and problems will be defined and explained. The evaluation measurements and scoring for the liver segmentation are shown, followed by the comparative study for liver segmentation methods, pros and cons of methods will be accentuated carefully. In this paper, we concluded that automatic liver segmentation using CT images is still an open problem since various weaknesses and drawbacks of the proposed methods can still be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Arya S, Mount DM, Netanyahu NS, Silverman R, Wu A (1998) An optimal algorithm for approximate nearest neighbor searching. J ACM 45(6): 891–923

    Article  MathSciNet  MATH  Google Scholar 

  • Barrett W, Mortensen EN (1997) Interactive live-wire boundary extraction. Med Imaging Anal 1(4): 331–341

    Article  Google Scholar 

  • Beck A, Aurich V (2007) HepaTux-a semiautomatic liver segmentation system. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 225–234

  • Beichel R, Bauer C, Bornik A, Sorantin E, Bischof H (2007) Liver segmentation in CT data: a segmentation refinement approach. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand Challenge, pp 235–245

  • Boykov Y, Funka-Lea G (2006) Graph cuts and efficient n-d image segmentation. IJCV 70(2): 109–131

    Article  Google Scholar 

  • Campadelli P, Casiraghi E, Esposito A (2009) Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif Intell Med 45(2–3): 185–196

    Article  Google Scholar 

  • Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, Evans TR (2001) Reconstruction and representation of 3-D objects with radial basis functions. In: Proceedings of SIGGRAPH, pp 67–76

  • Chi Y, Cashman PMM, Bello F, Kitney RI,(2007) A discussion on the evaluation of a new automatic liver volume segmentation method for specified CT image datasets. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 167–175

  • Cootes TF, Hill A, Taylor CJ, Haslam J (1994) Use of active shape models for locating structures in medical images. Imag Vis Comput 12(6): 355–366

    Article  Google Scholar 

  • Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1): 21–27

    Article  MATH  Google Scholar 

  • Dawant BM, Li R, Lennon B, Li S (2007) Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 215–221

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification. 2nd edn. Wiley interscience, New York

    Google Scholar 

  • Foruzan AH, Aghaeizadeh ZR, Hori M, Sato Y (2009) Liver segmentation by intensity analysis and anatomical information in multi-slice CT images. Int J Comput Assist Radiol Surg 4(3): 287–297

    Article  Google Scholar 

  • Gao L, Heath DG, Fishman EK (1998) Abdominal image segmentation using three-dimensional deformal models. Investiga Radiol 33(6):348–355

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6): 610–621

    Article  Google Scholar 

  • Heimann T et al (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8): 1251–1265

    Article  Google Scholar 

  • Kainmüller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 109–116

  • Koss JE, Newman FD, Johnson TK, Kirch DL (1999) Abdominal organ segmentation using texture transforms and a hopfield neural network. IEEE Trans Med Imaging 18(7): 640–648

    Article  Google Scholar 

  • Lamecker H, Lange R, Seeba M (2004) Segmentation of the liver using a 3d statistical shape model. Technical report Zuse Institue, Berlin, pp, pp 1–25

    Google Scholar 

  • Lee CC, Chung PC, Tsa H (2003) Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules. IEEE Trans Inf Technol Biomed 7(3): 208–217

    Article  Google Scholar 

  • Lim SJ, Jeong, YY, Ho YS (2004) Automatic segmentation of the liver in ct images using the watershed algorithm based on morphological filtering. In: Proceedings of SPIE, pp 1658–1666

  • Lim SJ, Jeong, YY, Ho YS (2005) Segmentation of the liver using the deformable contour method on CT images. In: Proceedings of SPIE medical imaging, pp 570–581

  • Lim SJ, Jeong YY, Ho YS (2006) Automatic liver segmentation for volume measurement in CT Images. JVCIR 17(4): 860–875

    Google Scholar 

  • Liu F, Zhao B, Kijewski PK, Wang L, Schwartz LH (2005) Liver segmentation for ct images using gvf snake. Med Phys 32(12): 3699–3706

    Article  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Suetens GMP (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2): 187–198

    Article  Google Scholar 

  • Mattes D, Haynor DR, Vesselle H, Lewellen TK, Eubank W (2003) PET-CT image registration in the chest using free-form deformations. IEEE Trans Med Imaging 22(1): 120–128

    Article  Google Scholar 

  • McLachlan GJ, Krishnan T (2009) The EM algorithm and extensions, 2nd edn. Wiley-Interscience, Hoboken

    Google Scholar 

  • Montagnat J, Delingette H (1996) Volumetric medical images segmentation using shape constrained deformable models. In: Proceedings of CVRMed-MRCAS, pp 13–22

  • Pan S, Dawant BM (2001) Automatic 3-D segmentation of the liver from abdominal CT images: a level-set approach. In: Proceedings of SPIE on medical imaging, pp 128–138

  • Pil UK, Yun JL, Youngjin J, Jin HC, Myoung NK, (2006) Liver extraction in the abdominal CT image by watershed segmentation algorithm. World congress of medical physics and biomedical engineering, pp 2563–2566

  • Rikxoort E, Arzhaeva Y, Ginneken B (2007) Automatic segmentation of the liver in computed tomography scans with voxel classification and atlas matching. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 101–108

  • Rohlfing T, Brandt R, Menzel R, Russakoff DB, Maurer CR (2005) Quo vadis, atlas-based segmentation? Handbook of medical image analysis—Volume III: Registration models. Kluwer Academic, Norwell MA, pp, pp 435–486

    Google Scholar 

  • Rousson M, Cremers D (2005) Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Proceedings of MICCAI, pp 757–764

  • Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18(8): 712–721

    Article  Google Scholar 

  • Ruskó L, Bekes G, Németh G, Fidrich M (2007) Fully automatic liver segmentation for contrast- enhanced CT images. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 143–150

  • Saddi KA, Rousson M, Chefd’hotel C, Cheriet F (2007) Global-to-local shape matching for liver segmentation in CT imaging. In. Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 207–214

  • Schenk A, Prause GP, Peitgen H (2001) Local cost computation for efficient segmentation of 3d objects with live wire. In: Proceedings of SPIE on medical imaging, pp 1357–1364

  • Seo KS, Park JA (2005) Improved automatic liver segmentation of a contrast enhanced CT image. Advances in multimedia information process—PCM, pp 899–909

  • Slagmolen P, Elen A, Seghers D, Loeckx D, Maes F, Haustermans, K (2007) Atlas based liver segmentation using nonrigid registration with a B-spline transformation model. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 197–206

  • Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J (2001) Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery. Comput Aided Surg 6(3): 131–142

    Article  Google Scholar 

  • Sonka M, Hlavac V, Boyle R (2007) Mathematical morphology in image processing,analysis, and machine vision. Thomson, Newyork

    Google Scholar 

  • Susomboon R, Raicu DS, Furst J (2007) A hybrid approach for liver segmentation. In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 151–160

  • Tsai D, Tanahashi N (1994) Neural-network-based boundary detection of liver structure in ct images for 3-d visualization. In: Proceedings of IEEE international conference neural networks, pp 3484–3489

  • Tsai A, Yezzi A, Wells W, Tempany C, Tucker D, Fan A, Grimson W, Willsky A (2003) A shape- based approach to the segmentation of medical imagery using level sets. IEEE Trans Med Imaging 22(2): 137–154

    Article  Google Scholar 

  • Weickert J, Romeny BMTH, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Imaging Process 7(3): 398–410

    Article  Google Scholar 

  • Wimmer A, Soza G, Hornegger J (2007) Two-stage semi-automatic organ segmentation framework using radial basis functions and level sets: In: Proceedings of MICCAI workshop on 3D segmentation in the clinic: a grand challenge, pp 179–188

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmed M. Mharib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mharib, A.M., Ramli, A.R., Mashohor, S. et al. Survey on liver CT image segmentation methods. Artif Intell Rev 37, 83–95 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI: