Skip to main content

Multi-agent based simulations using fast multipole method: application to large scale simulations of flocking dynamical systems

Abstract

This article introduces a novel approach to increase the performances of multi-agent based simulations. We focus on a particular kind of multi-agent based simulation where a collection of interacting autonomous situated entities evolve in a situated environment. Our approach combines the fast multipole method coming from computational physics with agent-based microscopic simulations. The aim is to speed up the execution of a multi-agent based simulation while controlling the precision of the associated approximation. This approach may be considered as the first step of a larger effort aiming at designing a generic kernel to support efficient large-scale multi-agent based simulations. This approach is illustrated in this paper by the simulation of large scale flocking dynamical systems.

This is a preview of subscription content, access via your institution.

References

  1. Darve E (2000) Error analysis and asymptotic complexity. SIAM J Numer Anal 38(1): 98–128

    Article  MathSciNet  MATH  Google Scholar 

  2. Davidsson P (2000) Multi agent based simulation: beyond social simulation. Multi agent based simulation, LNCS series, vol 1979. Springer, Berlin

  3. Dongarra JJ, Sullivan F (2000) The top 10 algorithms. Comput Sci Eng 2: 22–23

    Article  Google Scholar 

  4. Duraiswami R, Gumerov NA (2005) Lecture notes on the fast multipole method for copurse AMSC698R. University of Maryland, Maryland

    Google Scholar 

  5. Gaud N, Galland S, Koukam A (2008) Towards a multilevel simulation approach based on holonic multiagent systems, s.n. In: 10th international conference on computer modelling and simulation (EUROSIM), Cambridge, UK, pp 180–185

  6. Greengard L, Huang J (2002) A new version of the fast multipole method for screened Coulomb interactions in three dimensions. J Comput Phys 180: 642–658

    Article  MathSciNet  MATH  Google Scholar 

  7. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations, 2. Academic Press Professional, Inc., San Diego. J Comput Phys 73:325–348, 0021-9991

  8. Gumerov R, Duraiswami NA (2005) Fast multipole methods for the Helmholtz equation in three dimensions. Elsevier, Oxford

    Google Scholar 

  9. Gumerov NA, Duraiswami R, Borovikov EA (2003) Data structures, optimal choice of parameters, and complexity results for generalized multilevel fast multipole methods in d dimensions. s.l. University of Maryland Institute for advansed computer studies

  10. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407: 487–490

    Article  Google Scholar 

  11. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31(1): 61–85

    Article  MathSciNet  Google Scholar 

  12. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1): 90–98

    Article  MathSciNet  Google Scholar 

  13. Kress R (1999) Linear integral equations, applied mathematical sciences. Springer, Berlin

    Google Scholar 

  14. Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38: 534–570

    Article  MathSciNet  MATH  Google Scholar 

  15. Nicolas G et al (2007) Holonic multiagent multilevel simulation: application to real-time pedestrians simulation in urban environment. In: Hyderabad, India: s.n., Twentieth international joint conference on artificial intelligence, IJCAI’07, pp 1275–1280

  16. Olfati Saber R (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Control 51: 401–420

    Article  MathSciNet  Google Scholar 

  17. Olfati Saber R, Murray RM (2003) Consensus protocols for networks of dynamic agents. Am Control 951–956

  18. Olfati Saber R, Murray M (2003) Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. s.l.: IEEE. IEEE conference on decision and control, vol 5, pp 2022–2028

  19. Popov V, Power H (2001) An O(N) Taylor sereis multipole boundary element method for three-dimensional elasticity problems. Eng Anal Bound Elem 25: 7–18

    Article  MATH  Google Scholar 

  20. Reynolds Craig W (1987) Flocks, Herds, and Schools: {A} distributed behavioral model. Comput Graph 21(4): 25–34

    Article  Google Scholar 

  21. Saber RO, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE 49: 1520–1533

    Google Scholar 

  22. Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv 16(2): 187–260

    Article  MathSciNet  Google Scholar 

  23. Shagam J (2003) Dynamic Spatial partitioning for real-time visibility determination. PhD thesis, Department of Computer Science, New Mexico State University

  24. Shimoyama N et al (1996) Collective motion in a system of motile elements. Phys Rev Lett 76(20): 3870–3873

    Article  Google Scholar 

  25. Tanner HG, Jadbabaie A, Pappas GJ (2003) Stable flocking of mobile agents, part II: dynamic topology. In: 42nd IEEE conference on decision and control, pp 2010–2015

  26. Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58: 4828–4858

    Article  MathSciNet  Google Scholar 

  27. VanDyke Parunak H, Savit R, Riolo RL (1998) Agent-based modeling vs. equation-based modeling: a case and study and users’ guide. In: Sichman JS, Conte R, Gilbert N (eds) Multi-agent systems and agent-based simulation (MABS). Springer, Paris, pp 10–26

    Chapter  Google Scholar 

  28. Vicsek T, Czirook A et al (1995) Novel type of phase transition in a system of self-deriven particles. Phys Rev Lett 75: 1226–1229

    Article  Google Scholar 

  29. Yarvin N, Rokhlin V (1999) An improved fast multipole algorithm for potential fields on the line. SIAM J Numer Anal 629–666

  30. Yoshida K, Nishimura N, Kobayashi S (2001) Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int J Numer Methods Eng 50(3): 525–547

    Article  MATH  Google Scholar 

  31. Ying L, Boris G, Zorin D (2003) A kernel-independent fast multipole algorithm. Courant Institute, New York University. Technical Report TR2003-839

  32. Ying L, Biros G, Zorin D (2004) A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J Comput Phys 196(2): 591–626

    Article  MathSciNet  MATH  Google Scholar 

  33. Yuhong F et al (1998) A fast solution method for three-dimensional many-particle problems of linear elasticity. Int J Numer Methods Eng 42(7): 1215–1229

    Article  MATH  Google Scholar 

  34. Zhou J, Yu W, Wu X et al (2009) Flocking of multi-agent dynamical systems based on pseudo-leader mechanism, eprint arXiv:0905.1037. Cornell University Library

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. N. Razavi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Razavi, S.N., Gaud, N., Mozayani, N. et al. Multi-agent based simulations using fast multipole method: application to large scale simulations of flocking dynamical systems. Artif Intell Rev 35, 53–72 (2011). https://doi.org/10.1007/s10462-010-9183-9

Download citation

Keywords

  • Simulation
  • Multi-agent
  • Fast Multipole method
  • Flocking