Advertisement

Metabolic Syndrome Among People Living with HIV Receiving Medical Care in Southern United States: Prevalence and Risk Factors

  • Sabeena SearsEmail author
  • Justin R. Buendia
  • Sylvia Odem
  • Mina Qobadi
  • Pascale Wortley
  • Osaro Mgbere
  • Jontae Sanders
  • Emma C. Spencer
  • Arti Barnes
Original Paper
  • 67 Downloads

Abstract

Using representative data among 1861 in care people living with HIV (PLWH) in four southern states (Texas, Mississippi, Florida, and Georgia) from the 2013–2014 Medical Monitoring Project (MMP) survey, we estimated the prevalence and odds of metabolic syndrome (MetS) among various demographic and HIV related risk factors. Overall MetS prevalence was 34%, with our participants being mostly black (55%), male (72%), ≥ 50 years old (46%), and overweight or obese (60%) with undetectable viral loads (≤ 200 copies/ml, 69%), and were currently taking antiretroviral medication (98%). Compared to those who were ≥ 60 years, 18–39 year olds had a 79% (95% CI 0.13–0.33) lower odds of having MetS. Women were 2.24 times more likely to have MetS than men (95% CI 1.69–2.97). Age and sex were significant predictors of MetS. Since MetS is a combination of chronic disease risk factors, regular screening for MetS risk factors among aging PLWH is crucial.

Keywords

HIV Metabolic syndrome Medical Monitoring Project Southern United States 

Abbreviations

MetS

Metabolic syndrome

CVD

Cardiovascular disease

HIV

Human immunodeficiency virus

PLWH

People living with HIV

AIDS

Acquired immunodeficiency syndrome

aOR

Adjusted odds ratio

CI

Confidence intervals

MMP

Medical Monitoring Project

IDF

International Diabetes Federation

HDL

High density lipoprotein

BP

Blood pressure

BMI

Body mass index

ART

Antiretroviral therapy

T2DM

Type II diabetes mellitus

NFHL

Nutrition for healthy living

NHBLI

National Heart, Blood, and Lung Institute

AHA

American Heart Association

HAART

Highly active antiretroviral therapy

ATP

Adult treatment panel

Resumen

Usando datos representativos entre 1861 personas viviendo con VIH y recibiendo cuidado para VIH en cuatro estados del sur (Texas, Mississippi, Florida y Georgia) de la encuesta del Proyecto de Monitoreo Médico (MMP, siglas en inglés) 2013-2014, estimamos la prevalencia y las probabilidades del síndrome metabólico (MetS) entre varios factores de riesgo demográficos y relacionados con el VIH. La prevalencia general de MetS fue del 34%, y nuestros participantes fueron en su mayoría negros (55%), hombres (72%), ≥ 50 años (46%), con sobrepeso u obesidad (60%), con carga viral indetectable (≤ 200 copias/ml, 69%), y actualmente tomando medicamentos antirretrovirales (98%). En comparación con los que tenían ≥ 60 años, los de 18 a 39 años tuvieron un 79% (IC del 95%: 0.13-0.33) más baja probabilidad de tener MetS. Las mujeres tuvieron 2.24 veces más probabilidad de tener MetS que los hombres (IC del 95%:1.69-2.97). La edad y el sexo fueron predictores significativos de MetS. Dado que el MetS es una combinación de factores de riesgo para enfermedades crónicas, la evaluación regular de los factores de riesgo de MetS a lo largo del proceso de envejecimiento de personas que viven con VIH es crucial.

Notes

Acknowledgements

The authors would like to thank the HIV care facilities and sampled persons who participated in the MMP from the four Southern US states (Texas, Florida, Mississippi, and Georgia). We would also like to acknowledge the MMP staff from the participating project areas for the data collection; and members of the Community Advisory Board, Provider Advisory Board and management of the States’ Department of Health Services, local Health Departments and members of the Clinical Outcomes Team in CDC’s Behavioral and Clinical Surveillance Branch of the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention for their respective support and contributions.

Disclaimer

The findings and conclusions of this article are solely the responsibility of the authors and do not necessarily represent the official position of the US Centers for Disease Control and Prevention or any of the associated State Departments of Health Services or local Health Departments.

Funding

The Medical Monitoring Project for the data collection cycles used in the current study was supported by the Centers for Disease Control and Prevention (CDC) under the Cooperative Agreement Number PS09-937.

Compliance with Ethical Standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Grinsztejn B, Luz PM, Pacheco AG, et al. Changing mortality profile among HIV-infected patients in Rio de Janeiro, Brazil: shifting from AIDS to non-AIDS related conditions in the HAART era. PLoS ONE. 2013;8(4):e59768.CrossRefGoogle Scholar
  2. 2.
    Martin-Iguacel R, Negredo E, Peck R, Friis-Møller N. Hypertension is a key feature of the metabolic syndrome in subjects aging with HIV. Curr Hypertens Rep. 2016;18(6):46.CrossRefGoogle Scholar
  3. 3.
    Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9947):1005–70.CrossRefGoogle Scholar
  4. 4.
    Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med. 1998;338(13):853–60.CrossRefGoogle Scholar
  5. 5.
    Expert Panel on Detection E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486.CrossRefGoogle Scholar
  6. 6.
    Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28(7):1769–78.CrossRefGoogle Scholar
  7. 7.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.CrossRefGoogle Scholar
  8. 8.
    Sperling LS, Mechanick JI, Neeland IJ, et al. The cardiometabolic health alliance: working toward a new care model for the metabolic syndrome. J Am Coll Cardiol. 2015;66(9):1050–67.CrossRefGoogle Scholar
  9. 9.
    Paula AA, Falcão MC, Pacheco AG. Metabolic syndrome in HIV-infected individuals: underlying mechanisms and epidemiological aspects. AIDS Res Ther. 2013;10(1):32.CrossRefGoogle Scholar
  10. 10.
    Branson BM, Owen SM, Wesolowski LG, et al. Laboratory testing for the diagnosis of HIV infection: updated recommendations. 2014.Google Scholar
  11. 11.
    Jaggers JR, Prasad VK, Dudgeon WD, et al. Associations between physical activity and sedentary time on components of metabolic syndrome among adults with HIV. AIDS Care. 2014;26(11):1387–92.CrossRefGoogle Scholar
  12. 12.
    Jericó C, Knobel H, Montero M, et al. Metabolic syndrome among HIV-infected patients: prevalence, characteristics, and related factors. Diabetes Care. 2005;28(1):132–7.CrossRefGoogle Scholar
  13. 13.
    Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.CrossRefGoogle Scholar
  14. 14.
    Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. Aids. 1998;12(7):F51–8.CrossRefGoogle Scholar
  15. 15.
    Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.CrossRefGoogle Scholar
  16. 16.
    Farahani M, Mulinder H, Farahani A, Marlink R. Prevalence and distribution of non-AIDS causes of death among HIV-infected individuals receiving antiretroviral therapy: a systematic review and meta-analysis. Int J STD AIDS. 2017;28(7):636–50.CrossRefGoogle Scholar
  17. 17.
    Data Collection on Adverse Events of Anti-HIV drugs (D: A: D) Study Group. Factors associated with specific causes of death amongst HIV-positive individuals in the D: A: D Study. Aids. 2010;24(10):1537–48.Google Scholar
  18. 18.
    Friis-Moller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003;349(21):1993–2003.CrossRefGoogle Scholar
  19. 19.
    Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12.CrossRefGoogle Scholar
  20. 20.
    Lang S, Mary-Krause M, Cotte L, et al. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: a case–control study nested within the French Hospital Database on HIV ANRS cohort CO4. Arch Intern Med. 2010;170(14):1228–38.CrossRefGoogle Scholar
  21. 21.
    Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a U.S. Health Care System. J Acquir Immune Defic Syndr (1999). 2012;60(4):351–8.CrossRefGoogle Scholar
  22. 22.
    CfD Control. Prevention. National diabetes statistics report, 2017. Atlanta, GA: Centers for Disease Control and Prevention; 2017. p. 2017.Google Scholar
  23. 23.
    Tien PC, Schneider MF, Cox C, et al. Association of HIV infection with incident diabetes mellitus: impact of using hemoglobin A1C as a criterion for diabetes. J Acquir Immune Defic Syndr (1999). 2012;61(3):334.CrossRefGoogle Scholar
  24. 24.
    Brown TT, Cole SR, Li X, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84.CrossRefGoogle Scholar
  25. 25.
    Butt AA, McGinnis K, Rodriguez-Barradas MC, et al. HIV infection and the risk of diabetes mellitus. AIDS (London, England). 2009;23(10):1227.CrossRefGoogle Scholar
  26. 26.
    Samaras K. Prevalence and pathogenesis of diabetes mellitus in HIV-1 infection treated with combined antiretroviral therapy. JAIDS J Acquir Immune Defic Syndr. 2009;50(5):499–505.CrossRefGoogle Scholar
  27. 27.
    Rasmussen LD, Mathiesen ER, Kronborg G, Gerstoft J, Obel N. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS ONE. 2012;7(9):e44575.CrossRefGoogle Scholar
  28. 28.
    Rebeiro PF, Gange SJ, Horberg MA, et al. Geographic variations in retention in care among HIV-infected adults in the United States. PLoS ONE. 2016;11(1):e0146119.CrossRefGoogle Scholar
  29. 29.
    Ezzati M, Martin H, Skjold S, Hoorn SV, Murray CJ. Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys. J R Soc Med. 2006;99(5):250–7.CrossRefGoogle Scholar
  30. 30.
    Danaei G, Friedman AB, Oza S, Murray CJ, Ezzati M. Diabetes prevalence and diagnosis in US states: analysis of health surveys. Popul Health Metr. 2009;7(1):16.CrossRefGoogle Scholar
  31. 31.
    Hicks LS, Fairchild DG, Cook E, Ayanian JZ. Association of region of residence and immigrant status with hypertension, renal failure, cardiovascular disease, and stroke, among African-American participants in the third National Health and Nutrition Examination Survey (NHANES III). Ethn Dis. 2003;13(3):316–23.Google Scholar
  32. 32.
    Obisesan TO, Vargas CM, Gillum RF. Geographic variation in stroke risk in the United States: region, urbanization, and hypertension in the Third National Health and Nutrition Examination Survey. Stroke. 2000;31(1):19–25.CrossRefGoogle Scholar
  33. 33.
    Reif SS, Whetten K, Wilson ER, et al. HIV/AIDS in the Southern USA: a disproportionate epidemic. AIDS Care. 2014;26(3):351–9.CrossRefGoogle Scholar
  34. 34.
    Reif S, Safley D, McAllaster C, Wilson E, Whetten K. State of HIV in the US Deep South. J Community Health. 2017;42(5):844–53.CrossRefGoogle Scholar
  35. 35.
    AIDSVu. Emory University, Rollins School of Public Health; 2014. https://aidsvu.org/. Accessed 22 Jan 2019.
  36. 36.
    Iachan R, Johnson CH, Harding RL, et al. Design and weighting methods for a nationally representative sample of HIV-infected adults receiving medical care in the United States-Medical Monitoring Project. Open AIDS J. 2016;10:164.CrossRefGoogle Scholar
  37. 37.
    Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. Diab Med. 2006;23(5):469–80.CrossRefGoogle Scholar
  38. 38.
    Bozeman SR, Hoaglin DC, Burton TM, Pashos CL, Ben-Joseph RH, Hollenbeak CS. Predicting waist circumference from body mass index. BMC Med Res Methodol. 2012;12(1):115.CrossRefGoogle Scholar
  39. 39.
    Bernal E, Masia M, Padilla S, Martin-Hidalgo A, Gutierrez F. Prevalence and characteristics of metabolic syndrome among HIV-infected patients from a Mediterranean cohort. Med Clin. 2007;128(5):172–5.CrossRefGoogle Scholar
  40. 40.
    Gazzaruso C, Bruno R, Garzaniti A, et al. Hypertension among HIV patients: prevalence and relationships to insulin resistance and metabolic syndrome. J Hypertens. 2003;21(7):1377–82.CrossRefGoogle Scholar
  41. 41.
    Samaras K, Wand H, Law M, Emery S, Cooper D, Carr A. Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using International Diabetes Foundation and Adult Treatment Panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and hypoadiponectinemia. Diabetes Care. 2007;30(1):113–9.CrossRefGoogle Scholar
  42. 42.
    Nguyen KA, Peer N, de Villiers A, et al. Metabolic syndrome in people living with human immunodeficiency virus: an assessment of the prevalence and the agreement between diagnostic criteria. Int J Endocrinol. 2017;2017:1613657.CrossRefGoogle Scholar
  43. 43.
    Jacobson DL, Tang AM, Spiegelman D, et al. Incidence of metabolic syndrome in a cohort of HIV-infected adults and prevalence relative to the US population (National Health and Nutrition Examination Survey). J Acquir Immune Defic Syndr (1999). 2006;43(4):458–66.CrossRefGoogle Scholar
  44. 44.
    Freimer N, Echenberg D, Kretchmer N. Cultural variation—nutritional and clinical implications. West J Med. 1983;139(6):928–33.Google Scholar
  45. 45.
    Nicolson TJ, Mellor HR, Roberts RR. Gender differences in drug toxicity. Trends Pharmacol Sci. 2010;31(3):108–14.CrossRefGoogle Scholar
  46. 46.
    Hadigan C, Meigs JB, Corcoran C, et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin Infect Dis. 2001;32(1):130–9.CrossRefGoogle Scholar
  47. 47.
    Cerrato E, Calcagno A, D’Ascenzo F, et al. Cardiovascular disease in HIV patients: from bench to bedside and backwards. Open Heart. 2015;2(1):e000174.CrossRefGoogle Scholar
  48. 48.
    Pernerstorfer-Schoen H, Jilma B, Perschler A, et al. Sex differences in HAART-associated dyslipidaemia. Aids. 2001;15(6):725–34.CrossRefGoogle Scholar
  49. 49.
    Mosca L, Jones WK, King KB, Ouyang P, Redberg RF, Hill MN. Awareness, perception, and knowledge of heart disease risk and prevention among women in the United States. Arch Fam Med. 2000;9(6):506.CrossRefGoogle Scholar
  50. 50.
    Sobieszczyk ME, Hoover DR, Anastos K, et al. Prevalence and predictors of metabolic syndrome among HIV-infected and HIV-uninfected women in the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr (1999). 2008;48(3):272–80.CrossRefGoogle Scholar
  51. 51.
    Polotsky HN, Polotsky AJ, editors. Metabolic implications of menopause. Seminars in reproductive medicine; 2010. Stuttgart: Thieme Medical Publishers; 2010.Google Scholar
  52. 52.
    Akl L, Valadares A, Gomes D, Pinto-Neto A, Costa-Paiva L. Factors associated with metabolic syndrome in middle-aged women with and without HIV. J Metabolic Syndr. 2016;5(200):2167-0943.1000.Google Scholar
  53. 53.
    Tremollieres FA, Pouilles J-M, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol. 1996;175(6):1594–600.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Texas Department of State Health ServicesAustinUSA
  2. 2.Mississippi State Department of HealthJacksonUSA
  3. 3.Georgia Department of Public HealthAtlantaUSA
  4. 4.Houston Health DepartmentHoustonUSA
  5. 5.Florida Department of HealthTallahasseeUSA
  6. 6.Cornell Scott-Hill Health CenterNew HavenUSA
  7. 7.Yale School of MedicineNew HavenUSA
  8. 8.TB/STD/HIV Surveillance BranchTexas Department of State Health ServicesAustinUSA

Personalised recommendations