Skip to main content

HIV Care Trajectories as a Novel Longitudinal Assessment of Retention in Care

Abstract

Consistent engagement in care is associated with positive health outcomes among people living with HIV (PLWH). However, traditional retention measures ignore the evolving dynamics of engagement in care. To understand the longitudinal patterns of HIV care, we analyzed medical records from 2008 to 2015 of PLWH ≥ 18 years-old receiving care at a public, hospital-based HIV clinic (N = 2110). Using latent class analysis, we identified five distinct care trajectory classes: (1) consistent care (N = 1281); (2) less frequent care (N = 270); (3) return to care after initial attrition (N = 192); (4) moderate attrition (N = 163); and (5) rapid attrition (N = 204). The majority of PLWH in Class 1 (73.9%) had achieved sustained viral suppression (viral load ≤ 200 copies/mL at last test and > 12 months prior) by study end. Among the other care classes, there was substantial variation in sustained viral suppression (61.1% in Class 2 to 3.4% in Class 5). Care trajectories could be used to prioritize re-engagement efforts.

Resumen

La participación constante en el cuidado médico se asocia con resultados de salud positivos entre las personas que viven con el VIH (PVVIH). Sin embargo, las medidas de retención tradicionales no tienen en cuenta los cambios constantes en la dinámica de adherencia de los pacientes en el cuidado de su salud. Para entender los patrones longitudinales de la retención en atención médica al VIH, analizamos los registros médicos de 2110 PVVIH ≥ 18 años de edad que recibieron atención en una clínica de VIH de un hospital público entre 2008 y 2015. Utilizando un análisis de clases latentes, identificamos cinco clases distintas de trayectorias de retención en la atención: (1) retención constante (N = 1281); (2) retención menos frecuente (N = 270); (3) retorno al cuidado médico después del abandono inicial (N = 192); (4) abandono ocasional (N = 163); (5) abandono rápido (N = 205). La mayoría de las PVVIH en la Clase 1 (73.9%) alcanzaron supresión viral sostenida (carga viral ≤ 200 copias/mL en todas las cuentas virales disponibles entre 12 meses antes del final del seguimiento y en la última carga viral disponible. Entre las otras clases de adherencia, hubo una variación sustancial en la supresión viral sostenida (de 61.1% en Clase 2 a 3.4% en Clase 5). Las trayectorias de atención podrían usarse para priorizar los esfuerzos de re-integración a la atención médica.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Deeks SG, Lewin SR, Havlir D. The end of AIDS: HIV infection as a chronic disease. Lancet. 2013;382:1525–33.

    Article  Google Scholar 

  2. Samji H, Cescon A, Hogg RS, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE. 2013;8:6–13.

    Article  CAS  Google Scholar 

  3. Attia S, Egger M, Müller M, et al. Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS. 2009;23:1397–404.

    Article  Google Scholar 

  4. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365:493–505.

    Article  CAS  Google Scholar 

  5. Centers for Disease Control and Prevention. Selected National HIV prevention and care outcomes in the United States, Atlanta, GA. 2018. https://www.cdc.gov/hiv/pdf/library/factsheets/cdc-hiv-national-hiv-care-outcomes.pdf. Accessed 22 Feb 2019.

  6. Giordano TP, Gifford AL, White AC, et al. Retention in care: a challenge to survival with HIV infection. Clin Infect Dis. 2007;44:1493–9.

    Article  Google Scholar 

  7. Mugavero MJ, Lin H, Willig JH, et al. Missed visits and mortality among patients establishing initial outpatient HIV treatment. Clin Infect Dis. 2009;48:248–56.

    Article  Google Scholar 

  8. Horberg MA, Hurley LB, Silverberg MJ, et al. Missed office visits and risk of mortality among HIV-infected subjects in a large healthcare system in the United States. AIDS Patient Care STDS. 2013;27:442–9.

    Article  Google Scholar 

  9. Valdez H, Lederman MM, Woolley I, et al. Human immunodeficiency virus 1 protease inhibitors in clinical practice: predictors of virological outcome. Arch Intern Med. 2014;159:1771–6.

    Article  Google Scholar 

  10. Rastegar DA, Fingerhood MI, Jasinski DR. Highly active antiretroviral therapy outcomes in a primary care clinic. AIDS Care. 2003;15:231–7.

    Article  CAS  Google Scholar 

  11. Berg MB, Safren SA, Mimiaga MJ, et al. Nonadherence to medical appointments is associated with increased plasma HIV RNA and decreased CD4 cell counts in a community-based HIV primary care clinic. AIDS Care. 2005;17:902–7.

    Article  CAS  Google Scholar 

  12. Park WB, Choe PG, Kim SH, et al. One-year adherence to clinic visits after highly active antiretroviral therapy: a predictor of clinical progress in HIV patients. J Intern Med. 2007;261:268–75.

    Article  CAS  Google Scholar 

  13. Sethi AK, Celentano DD, Gange SJ, et al. Association between adherence to antiretroviral therapy and human immunodeficiency virus drug resistance. Clin Infect Dis. 2003;37:1112–8.

    Article  Google Scholar 

  14. Horstmann E, Brown J, Islam F, et al. Retaining HIV-infected patients in care: where are we? Where do we go from here? Clin Infect Dis. 2010;50:752–61.

    PubMed  Google Scholar 

  15. Yehia BR, French B, Fleishman JA, et al. Retention in care is more strongly associated with viral suppression in HIV-infected patients with lower versus higher CD4 counts. J Acquir Immune Defic Syndr. 2014;65:333–9.

    Article  Google Scholar 

  16. Kay ES, Batey DS, Mugavero MJ. The HIV treatment cascade and care continuum: updates, goals, and recommendations for the future. AIDS Res Ther. 2016;13:1–7.

    Article  Google Scholar 

  17. Mugavero MJ, Westfall AO, Zinski A, et al. Measuring retention in HIV care: the elusive gold standard. J Acquir Immune Defic Syndr. 2012;61:574–80.

    Article  Google Scholar 

  18. Crawford TN, Sanderson WT, Thornton A. A comparison study of methods for measuring retention in HIV medical care. AIDS Behav. 2013;17:3145–51.

    Article  Google Scholar 

  19. Yehia BR, Fleishman JA, Metlay JP, et al. Comparing different measures of retention in outpatient HIV care. AIDS. 2012;26:1131–9.

    Article  Google Scholar 

  20. Rebeiro P, Althoff KN, Buchacz K, et al. Retention among North American HIV-infected persons in clinical care, 2000–2008. J Acquir Immune Defic Syndr. 2013;62:356–62.

    Article  Google Scholar 

  21. Yehia BR, Stephens-Shields AJ, Fleishman JA, et al. The HIV care continuum: changes over time in retention in care and viral suppression. PLoS ONE. 2015;10:1–10.

    Google Scholar 

  22. Lee H, Wu XK, Genberg BL, et al. Beyond binary retention in HIV care: predictors of the dynamic processes of patient engagement, disengagement, and re-entry into care in a US clinical cohort. AIDS. 2018;32:2217–25.

    Article  Google Scholar 

  23. Glass TR, Battegay M, Cavassini M, et al. Longitudinal analysis of patterns and predictors of changes in self-reported adherence to antiretroviral therapy: Swiss HIV Cohort Study. J Acquir Immune Defic Syndr. 2010;54:197–203.

    Article  Google Scholar 

  24. Watson C-A, Weng CX, French T, et al. Substance abuse treatment utilization, HIV risk behaviors, and recruitment among suburban injection drug users in Long Island, New York. AIDS Behav. 2014;18(Suppl 3):305–15.

    Article  Google Scholar 

  25. Green TC, Kershaw T, Lin H, et al. Patterns of drug use and abuse among aging adults with and without HIV: a latent class analysis of a US Veteran cohort. Drug Alcohol Depend. 2010;110:208–20.

    Article  Google Scholar 

  26. Parsons JT, Starks TJ, Millar BM, et al. Patterns of substance use among HIV-positive adults over 50: implications for treatment and medication adherence. Drug Alcohol Depend. 2014;139:33–40.

    Article  Google Scholar 

  27. Vasilenko SA, Kugler KC, Butera NM, et al. Patterns of adolescent sexual behavior predicting young adult sexually transmitted infections: a latent class analysis approach. Arch Sex Behav. 2015;44:705–15.

    Article  Google Scholar 

  28. Minnesota Department of Health. HIV/AIDS Prevalence and Mortality Tables—2013, St. Paul, MN 2014. www.health.state.mn.us/divs/idepc/diseases/hiv/stats/2013. Accessed 28 Feb 2018.

  29. Enns EA, Reilly CS, Virnig BA, et al. Potential impact of integrating HIV surveillance and clinic data on retention-in-care estimates and re-engagement efforts. AIDS Patient Care STDS. 2016;30:409–15.

    Article  Google Scholar 

  30. Dombrowski JC, Buskin SE, Bennett A, et al. Use of multiple data sources and individual case investigation to refine surveillance-based estimates of the HIV care continuum. J Acquir Immune Defic Syndr. 2014;67:323–30.

    Article  Google Scholar 

  31. Collins LM, Lanza ST. Latent class and latent transition analysis. Hoboken, NJ: Wiley; 2010.

    Google Scholar 

  32. Linzer DA, Lewis JB. poLCA: an R package for polytomous variable latent class analysis. J Stat Softw. 2011;42:1–29.

    Article  Google Scholar 

  33. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018; http://www.R-project.org/.

  34. Hunink MGM, Weinstein MC, Wittenberg E, et al. Decision making in health and medicine: integrating evidence and values. 2nd ed. Cambridge: Cambridge University Press; 2014.

    Book  Google Scholar 

  35. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    Article  Google Scholar 

  36. Canty A, Ripley B. boot: Boostrap R (S-Plus) Functions. R package version 1.3-20, 2017.

  37. Davison AC, Hinkley DV. Boostrap methods and their applications. Cambridge: Cambridge University Press; 1997.

    Book  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the National Institute for Allergy and Infectious Disease of the National Institutes of Health under Award No. K25AI118476 (PI: Enns). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors wish to acknowledge Allison La Pointe and Jessica Munroe at the Minnesota Department of Health for facilitating the merging of clinic data with state surveillance data and Dr. Tenko Raykov at Michigan State University for early discussions on the application of latent class methods in this analysis.

Disclosures

Funding for this study was provided by the National Institute for Allergy and Infectious Disease of the National Institutes of Health under Award No. K25AI118476 (PI: Enns). Portions of this analysis were presented at the 38th Annual Meeting of the Society for Medical Decision Making, Oct. 23–24, 2016 and at the 2018 Conference on Retroviruses and Opportunistic Infections (CROI), March 4–7, 2018.

Funding

This study was funded by the National Institute for Allergy and Infectious Disease of the National Institutes of Health under Award No. K25AI118476 (PI: Enns).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva A. Enns.

Ethics declarations

Conflict of interest

Dr. Enns received an honorarium from ViiV Healthcare for participation in a technical advisory meeting unrelated to this work. Dr. Reilly declares that he has no conflict of interest. Dr. Horvath declares that he has no conflict of interest. Ms. Baker-James declares that she has no conflict of interest. Dr. Henry has received research funding unrelated to this work from Merck, Janssen, ViiV/GSK, and Gilead.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 654 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enns, E.A., Reilly, C.S., Horvath, K.J. et al. HIV Care Trajectories as a Novel Longitudinal Assessment of Retention in Care. AIDS Behav 23, 2532–2541 (2019). https://doi.org/10.1007/s10461-019-02450-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10461-019-02450-7

Keywords

  • HIV
  • Retention in care
  • Care patterns
  • Latent class analysis
  • Sustained viral suppression