Advertisement

AIDS and Behavior

, Volume 23, Issue 3, pp 627–635 | Cite as

Physical Activity Intensity is Associated with Symptom Distress in the CNICS Cohort

  • Allison R. WebelEmail author
  • Amanda L. Willig
  • Wei Liu
  • Abdus Sattar
  • Stephen Boswell
  • Heidi M. Crane
  • Peter Hunt
  • Mari Kitahata
  • W. Christopher Matthews
  • Michael S. Saag
  • Michael M. Lederman
  • Benigno Rodriguez
Original Paper

Abstract

Symptom distress remains a challenging aspect of living with HIV. Physical activity is a promising symptom management strategy, but its effect on symptom distress has not been examined in a large, longitudinal HIV-infected cohort. We hypothesized that higher physical activity intensity would be associated with reduced symptom distress. We included 5370 people living with HIV (PLHIV) who completed patient-reported assessments of symptom distress, physical activity, alcohol and substance use, and HIV medication adherence between 2005 and 2016. The most frequent and burdensome symptoms were fatigue (reported by 56%), insomnia (50%), pain (46%), sadness (45%), and anxiety (45%), with women experiencing more symptoms and more burdensome symptoms than men. After adjusting for age, sex, race, time, HIV medication adherence, alcohol and substance use, site, and HIV RNA, greater physical activity intensity was associated with lower symptom intensity. Although individual symptoms may be a barrier to physical activity (e.g. pain), the consistent association between symptoms with physical activity suggests that more intense physical activity could mitigate symptoms experienced by PLHIV.

Keywords

HIV Symptoms Physical Activity Pain 

Resumen

La carga de síntomas sigue siendo un aspecto problemático para personas que viven con VIH. La actividad física es una prometedora estrategia de manejo, pero su efecto sobre la carga de síntomas no ha sido examinado en estudios grande longitudinales de cohortes. Nuestra hipótesis es que una mayor intensidad de actividad física puede estar asociada con una reducción de la carga de síntomas. En este estudio, incluimos 5.370 personas viviendo con VIH (PVV) que completaron cuestionarios estandarizados de carga de síntomas, actividad física, uso de alcohol y drogas, y adherencia a medicamentos entre 2005 y 2016. Los síntomas más frecuentes y con mayor impacto fueron cansancio (descrito por 56%), insomnio (50%), dolor (46%), tristeza (45%), y ansiedad (45%). Las mujeres describieron mayor número y mayor carga de síntomas que los hombres. Después de ajustar por edad, sexo, raza, tiempo, adherencia a antiretrovirales, uso de alcohol y drogas, sito y carga viral, una mayor actividad física estuvo asociada con una menor intensidad de síntomas. Aunque algunos síntomas individuales pueden ser una barrera para la actividad física (como el dolor, por ejemplo), la consistente asociación entre síntomas y actividad física en nuestro estudio sugiere que una mayor intensidad de actividad física podría mitigar algunos de los síntomas que experimentan las PVV.

Notes

Acknowledgement

This project was funded by grants from the National Institutes of Health (R24 AI067039) made possible by the National Institute of Allergy and Infectious Diseases (NIAID) and the National Heart, Lung, and Blood Institute (NHLBI) and by the National Institute of Nursing Research (NINR) (R01 NR018391).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no potential conflicts of interest that could influence or bias the material in this manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10461_2018_2319_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 12 kb)

References

  1. 1.
    Armstrong TS. Symptoms experience: a concept analysis. Oncol Nurs Forum. 2003;30(4):601–6.Google Scholar
  2. 2.
    Portillo CJ, Holzemer WL, Chou FY. HIV symptoms. Annu Rev Nurs Res. 2007;25:259–91.Google Scholar
  3. 3.
    Zeller JM, Swanson B, Cohen FL. Suggestions for clinical nursing research: symptom management in AIDS patients. J Assoc Nurses AIDS Care. 1993;4(3):13–7.Google Scholar
  4. 4.
    Chou FY, Holzemer WL, Portillo CJ, Slaughter R. Self-care strategies and sources of information for HIV/AIDS symptom management. Nurs Res. 2004;53(5):332–9.Google Scholar
  5. 5.
    Webel AR, Wantland D, Rose CD, Kemppainen J, Holzemer WL, Chen W-T, et al. A cross-sectional relationship between social capital, self-compassion, and perceived HIV symptoms. J Pain Symptom Manage. 2015;50(1):59–68.Google Scholar
  6. 6.
    Lee KA, Dziadkowiec O, Meek P. A systems science approach to fatigue management in research and health care. Nurs Outlook. 2014;62(5):313–21.Google Scholar
  7. 7.
    Lee KA, Gay CL, Lerdal A, Pullinger CR, Aouizerat BE. Cytokine polymorphisms are associated with fatigue in adults living with HIV/AIDS. Brain Behav Immun. 2014;40:95–103.Google Scholar
  8. 8.
    Gonzalez JS, Penedo FJ, Llabre MM, Durán RE, Antoni MH, Schneiderman N, et al. Physical symptoms, beliefs about medications, negative mood, and long-term HIV medication adherence. Ann Behav Med. 2007;34(1):46–55.Google Scholar
  9. 9.
    McCoy K, Waldrop-Valverde D, Balderson BH, Mahoney C, Catz S. Correlates of antiretroviral therapy adherence among HIV-infected older adults. J Int Assoc Provid AIDS Care (JIAPAC). 2016;15:248–55.Google Scholar
  10. 10.
    Gay C, Portillo CJ, Kelly R, Coggins T, Davis H, Aouizerat BE, et al. Self-reported medication adherence and symptom experience in adults with HIV. J Assoc Nurses AIDS Care. 2011;22(4):257–68.Google Scholar
  11. 11.
    Vyavaharkar M, Moneyham L, Murdaugh C, Tavakoli A. Factors associated with quality of life among rural women with HIV disease. AIDS Behav. 2012;16(2):295–303.Google Scholar
  12. 12.
    Balderson BH, Grothaus L, Harrison RG, McCoy K, Mahoney C, Catz S. Chronic illness burden and quality of life in an aging HIV population. AIDS Care. 2013;25(4):451–8.Google Scholar
  13. 13.
    Miners A, Phillips A, Kreif N, Rodger A, Speakman A, Fisher M, et al. Health-related quality-of-life of people with HIV in the era of combination antiretroviral treatment: a cross-sectional comparison with the general population. Lancet HIV. 2014;1(1):e32–40.Google Scholar
  14. 14.
    Schnall R, Liu J, Cho H, Hirshfield S, Siegel K, Olender S. A health-related quality-of-life measure for use in patients with HIV: a validation study. AIDS Patient Care STDs. 2017;31(2):43–8.Google Scholar
  15. 15.
    Wilson NL, Azuero A, Vance DE, Richman JS, Moneyham LD, Raper JL, et al. Identifying symptom patterns in people living With HIV disease. J Assoc Nurses AIDS Care. 2016;27(2):121–32.Google Scholar
  16. 16.
    Iribarren S, Siegel K, Hirshfield S, Olender S, Voss J, Krongold J, et al. Self-management strategies for coping with adverse symptoms in persons living with HIV with HIV associated non-AIDS conditions. AIDS Behav. 2018;22(1):297–307.Google Scholar
  17. 17.
    Edelman EJ, Gordon KS, Glover J, McNicholl IR, Fiellin DA, Justice AC. The next therapeutic challenge in HIV: polypharmacy. Drugs Aging. 2013;30(8):613–28.Google Scholar
  18. 18.
    Gimeno-Gracia M, Crusells-Canales MJ, Armesto-Gomez FJ, Compaired-Turlan V, Rabanaque-Hernandez MJ. Polypharmacy in older adults with human immunodeficiency virus infection compared with the general population. Clin Interv Aging. 2016;11:1149–57.Google Scholar
  19. 19.
    Siefried KJ, Mao L, Cysique LA, Rule J, Giles ML, Smith DE, et al. Concomitant medication polypharmacy, interactions and imperfect adherence are common in Australian adults on suppressive antiretroviral therapy. AIDS (London, England). 2018;32(1):35–48.Google Scholar
  20. 20.
    van Luenen S, Garnefski N, Spinhoven P, Spaan P, Dusseldorp E, Kraaij V. The benefits of psychosocial interventions for mental health in people living with HIV: a systematic review and meta-analysis. AIDS Behav. 2018;22(1):9–42.Google Scholar
  21. 21.
    Schnall R, Cho H, Mangone A, Pichon A, Jia H. Mobile health technology for improving symptom management in low income persons living with HIV. Aids Behav. 2018;22:3373–83.Google Scholar
  22. 22.
    Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126.Google Scholar
  23. 23.
    McMillan EM, Newhouse IJ. Exercise is an effective treatment modality for reducing cancer-related fatigue and improving physical capacity in cancer patients and survivors: a meta-analysis. Appl Physiol Nutr Metab. 2011;36(6):892–903.Google Scholar
  24. 24.
    Zou L-Y, Yang L, He X-L, Sun M, Xu J-J. Effects of aerobic exercise on cancer-related fatigue in breast cancer patients receiving chemotherapy: a meta-analysis. Tumor Biol. 2014;35(6):5659–67.Google Scholar
  25. 25.
    Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Libr. 2017;1:CD011279.Google Scholar
  26. 26.
    Harvey SB, Overland S, Hatch SL, Wessely S, Mykletun A, Hotopf M. Exercise and the prevention of depression: results of the HUNT Cohort study. Am J Psychiatr. 2018;175(1):28–36.Google Scholar
  27. 27.
    Salmon VE, Hewlett S, Walsh NE, Kirwan JR, Cramp F. Physical activity interventions for fatigue in rheumatoid arthritis: a systematic review. Phys Therapy Rev. 2017;22(1–2):12–22.Google Scholar
  28. 28.
    Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71–85.Google Scholar
  29. 29.
    Jaggers J, Hand G, Dudgeon W, Burgess S, Phillips K, Durstine J, et al. Aerobic and resistance training improves mood state among adults living with HIV. Int J Sports Med. 2015;36(02):175–81.Google Scholar
  30. 30.
    O’Brien KK, Tynan A-M, Nixon SA, Glazier RH. Effectiveness of aerobic exercise for adults living with HIV: systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infect Dis. 2016;16(1):182.Google Scholar
  31. 31.
    Uebelacker LA, Weisberg RB, Herman DS, Bailey GL, Pinkston-Camp MM, Garnaat SL, et al. Pilot randomized trial of collaborative behavioral treatment for chronic pain and depression in persons living with HIV/AIDS. AIDS Behav. 2016;20(8):1675–81.Google Scholar
  32. 32.
    Webel AR, Perazzo J, Decker M, Horvat-Davey C, Sattar A, Voss J. Physical activity is associated with reduced fatigue in adults living with HIV/AIDS. J Adv Nurs. 2016;72(12):3104–12.Google Scholar
  33. 33.
    Fazeli PL, Marquine MJ, Dufour C, Henry BL, Montoya J, Gouaux B, et al. Physical activity is associated with better neurocognitive and everyday functioning among older adults with HIV disease. AIDS Behav. 2015;19(8):1470–7.Google Scholar
  34. 34.
    Justice AC, McGinnis KA, Skanderson M, Chang CC, Gibert CL, Goetz MB, et al. Towards a combined prognostic index for survival in HIV infection: the role of ‘non-HIV’ biomarkers. HIV Med. 2010;11(2):143–51.Google Scholar
  35. 35.
    Dodd M, Janson S, Facione N, Faucett J, Froelicher ES, Humphreys J, et al. Advancing the science of symptom management. J Adv Nurs. 2001;33(5):668–76.Google Scholar
  36. 36.
    Helbig AK, Stöckl D, Heier M, Thorand B, Schulz H, Peters A, et al. Relationship between sleep disturbances and multimorbidity among community-dwelling men and women aged 65–93 years: results from the KORA age study. Sleep Med. 2017;33:151–9.Google Scholar
  37. 37.
    Kitahata MM, Rodriguez B, Haubrich R, Boswell S, Mathews WC, Lederman MM, et al. Cohort profile: the centers for AIDS research network of integrated clinical systems. Int J Epidemiol. 2008;37(5):948–55.Google Scholar
  38. 38.
    Fredericksen R, Crane PK, Tufano J, Ralston J, Schmidt S, Brown T, et al. Integrating a web-based, patient-administered assessment into primary care for HIV-infected adults. J AIDS and HIV Res (Online). 2012;4(2):47–55.Google Scholar
  39. 39.
    Justice AC, Holmes W, Gifford AL, Rabeneck L, Zackin R, Sinclair G, et al. Development and validation of a self-completed HIV symptom index. J Clin Epidemiol. 2001;54(Suppl 1):S77–90.Google Scholar
  40. 40.
    Justice AC, Rabeneck L, Hays RD, Wu AW, Bozzette SA. Sensitivity, specificity, reliability, and clinical validity of provider-reported symptoms: a comparison with self-reported symptoms. Outcomes Committee of the AIDS Clinical Trials Group. J Acquir Immune Defic Syndr. 1999;21(2):126–33.Google Scholar
  41. 41.
    Ainsworth BE, Jacobs DR Jr, Leon AS. Validity and reliability of self-reported physical activity status: the Lipid Research Clinics questionnaire. Med Sci Sports Exerc. 1993;25(1):92–8.Google Scholar
  42. 42.
    Blashill AJ, Mayer KH, Crane H, Magidson JF, Grasso C, Mathews WC, et al. Physical activity and health outcomes among HIV-infected men who have sex with men: a longitudinal mediational analysis. Ann Behav Med. 2013;46(2):149–56.Google Scholar
  43. 43.
    Willig A, Westfall A, Crane H, Burkholder G, Zinski A, Willig J et al. (Eds) The beneficial effects of physical activity in the setting of HIV infection. ANTIVIRAL THERAPY; 2016: INT MEDICAL PRESS LTD 2-4 IDOL LANE, LONDON EC3R 5DD, ENGLAND.Google Scholar
  44. 44.
    Newcombe DA, Humeniuk RE, Ali R. Validation of the world health organization alcohol, smoking and substance involvement screening test (ASSIST): report of results from the Australian site. Drug Alcohol Rev. 2005;24(3):217–26.Google Scholar
  45. 45.
    Alcohol The. Smoking and substance involvement screening test (ASSIST): development, reliability and feasibility. Addiction (Abingdon, England). 2002;97(9):1183–94.Google Scholar
  46. 46.
    Crane HM, McCaul ME, Chander G, Hutton H, Nance RM, Delaney JAC, et al. Prevalence and factors associated with hazardous alcohol use among persons living with HIV across the US in the current era of antiretroviral treatment. AIDS Behav. 2017;21(7):1914–25.Google Scholar
  47. 47.
    Introducing the GLIMMIX Procedure for Generalized Linear Mixed Models [Internet]. Available http://www2.sas.com/proceedings/sugi30/196-30.pdf. Accessed 16 Jan 2018.
  48. 48.
    Ertek S, Cicero A. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions. Arch Med Sci. 2012;8(5):794–804.Google Scholar
  49. 49.
    Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda). 2013;28(5):330–58.Google Scholar
  50. 50.
    Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis: a systematic review. Atherosclerosis. 2014;235(1):150–61.Google Scholar
  51. 51.
    Plaisance EP, Grandjean PW. Physical activity and high-sensitivity C-reactive protein. Sports Med. 2006;36(5):443–58.Google Scholar
  52. 52.
    Karshikoff B, Sundelin T, Lasselin J. Role of inflammation in human fatigue: relevance of multidimensional assessments and potential neuronal mechanisms. Front Immunol. 2017;8:21.Google Scholar
  53. 53.
    Wium-Andersen M, Ørsted D, Nielsen S, Nordestgaard B. Elevated c-reactive protein levels, psychological distress, and depression in 73 131 individuals. JAMA Psychiatry. 2013;70(2):176–84.Google Scholar
  54. 54.
    Jin X, Beguerie JR, Zhang W, Blizzard L, Otahal P, Jones G, et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(4):703–10.Google Scholar
  55. 55.
    Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361(1):184–7.Google Scholar
  56. 56.
    Fairweather D. Sex differences in inflammation during atherosclerosis. Clin Med Insights Cardiol. 2014;8(3):49–59.Google Scholar
  57. 57.
    Schmitt J, Lindner N, Reuss-Borst M, Holmberg HC, Sperlich B. A 3-week multimodal intervention involving high-intensity interval training in female cancer survivors: a randomized controlled trial. Physiol Rep. 2016.  https://doi.org/10.14814/phy2.12693.Google Scholar
  58. 58.
    Adlard K, Devin J, Jenkins D, Bolam K, Aitken J, Chambers S, et al. The influence of exercise intensity on fatigue in colorectal cancer survivors: a randomised controlled trial. Clin Oncol Soc Aust. 2016;12:78.Google Scholar
  59. 59.
    Schmidt S, Wonneberger M. High-intensity interval ergometer training improves aerobic capacity and fatigue in patients with Multiple Sclerosis (P4. 031). Neurology. 2017;88(16):P4. 031.Google Scholar
  60. 60.
    Miaskowski C. Future directions in symptom cluster research. Semin Oncol Nurs. 2016;32(4):405–15.Google Scholar
  61. 61.
    Hsu HT, Lin KC, Wu LM, Juan CH, Hou MF, Hwang SL, et al. Symptom cluster trajectories during chemotherapy in breast cancer outpatients. J Pain Symptom Manage. 2017;53(6):1017–25.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Allison R. Webel
    • 1
    Email author
  • Amanda L. Willig
    • 2
  • Wei Liu
    • 1
  • Abdus Sattar
    • 1
  • Stephen Boswell
    • 3
  • Heidi M. Crane
    • 4
  • Peter Hunt
    • 5
  • Mari Kitahata
    • 4
  • W. Christopher Matthews
    • 6
  • Michael S. Saag
    • 2
  • Michael M. Lederman
    • 7
  • Benigno Rodriguez
    • 7
  1. 1.Frances Payne Bolton School of NursingCase Western Reserve UniversityClevelandUSA
  2. 2.School of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Fenway HealthBostonUSA
  4. 4.School of MedicineUniversity of WashingtonSeattleUSA
  5. 5.School of MedicineUniversity of California, San FranciscoSan FranciscoUSA
  6. 6.University of California, San Diego Medical CenterSan DiegoUSA
  7. 7.School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations