Advertisement

AIDS and Behavior

, Volume 21, Issue 12, pp 3440–3456 | Cite as

Punto Seguro: A Randomized Controlled Pilot Using Conditional Economic Incentives to Reduce Sexually Transmitted Infection Risks in Mexico

  • Omar Galárraga
  • Sandra G. Sosa-Rubí
  • Caroline Kuo
  • Pedro Gozalo
  • Andrea González
  • Biani Saavedra
  • Nathalie Gras-Allain
  • Carlos J. Conde-Glez
  • Maria Olamendi-Portugal
  • Kenneth H. Mayer
  • Don Operario
Article

Abstract

Randomized controlled pilot evaluated effect of conditional economic incentives (CEIs) on number of sex partners, condom use, and incident sexually transmitted infections (STIs) among male sex workers in Mexico City. Incentives were contingent on testing free of new curable STIs and/or clinic attendance. We assessed outcomes for n = 227 participants at 6 and 12 months (during active phase with incentives), and then at 18 months (with incentives removed). We used intention-to-treat and inverse probability weighting for the analysis. During active phase, CEIs increased clinic visits (10–13 percentage points) and increased condom use (10–15 percentage points) for CEI groups relative to controls. The effect on condom use was not sustained once CEIs were removed. CEIs did not have an effect on number of partners or incident STIs. Conditional incentives for male sex workers can increase linkage to care and retention and reduce some HIV/STI risks such as condomless sex, while incentives are in place.

Keywords

Conditional economic incentives Conditional cash transfers HIV prevention Sexually transmitted infections prevention Male sex workers Mexico 

Resumen

Este estudio controlado aleatorizado evaluó el efecto de los incentivos económicos condicionados (IECs) sobre el número de parejas sexuales, el uso del condón y las infecciones de transmisión sexual (ITS) entre los trabajadores sexuales masculinos en la Ciudad de México. En los grupos experimentales, los participantes recibieron IECs por estar libres de nuevas ITS curables y/o por asistencia a la clínica. Se evaluaron resultados para n = 227 participantes a los 6 y 12 meses (durante la fase activa con incentivos) y luego a los 18 meses (sin incentivos). Se utilizó modelos de intención de tratar y ponderación de probabilidad inversa. Durante la fase activa, los IECs aumentaron las visitas clínicas (10–13 puntos porcentuales) y el uso del condón (10–15 puntos porcentuales) en relación al grupo control. El efecto sobre el uso del condón no se mantuvo una vez que se eliminaron los incentivos. Los IECs no tuvieron efecto sobre el número de parejas sexuales o la incidencia de ITS. Los incentivos condicionales para los trabajadores sexuales pueden aumentar el vínculo y la retención en los servicios clínicos y reducir algunos riesgos como el sexo sin preservativo.

Notes

Acknowledgments

We acknowledge useful comments, at different stages of development of these ideas, from Sergio Bautista-Arredondo, Stefano Bertozzi, Damien de Walque, Will Dow, Paul Gertler, Manisha Shah, Kristen Underhill, David M. Williams and Ira Wilson. Preliminary results presented at scientific conferences: International AIDS Society (IAS); HIV in the Americas; HIV Research for Prevention (R4P); Northeastern Universities Development Conference (NEUDC) at Massachusetts Institute of Technology (MIT). As well as seminars at: Brown University; Centro de Investigación y Docencia Económicas, CIDE; Clínica Condesa; Harvard Center for Population and Development Studies; McGill University; National Institute of Public Health. We gratefully acknowledge all staff members; particularly Octavio Parra, and Jehovani Tena; as well as the clinical staff including Arturo Martínez and Florentino Badial. Santa García conducted the PCR diagnosis of chlamydia and gonococcus in urine samples. The Consortium for HIV/AIDS Research (CISIDAT, A.C.) provided project management and administration support. We especially thank the participants for agreeing to become part of Punto Seguro.

Funding

U.S. National Institutes of Health (R21HD065525 Economic incentives to reduce HIV/STI risk: A pilot in Mexico, PI: Galárraga O; and R24HD041020 Population Studies and Training Center at Brown University) with additional support provided by the Mexican National Center for HIV/AIDS Control and Prevention (CENSIDA: Proy-2014-0262). The funders had no role in study design; data collection, analysis or interpretation; report writing; or decision to submit article for publication. The findings, interpretations and conclusions expressed in this paper are entirely those of the authors.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Fiszbein A, Schady NR, Ferreira FHG. Conditional cash transfers: reducing present and future poverty. Washington, DC: World Bank; 2009.CrossRefGoogle Scholar
  2. 2.
    Baird S, Chirwa E, McIntosh C, Ozler B. The short-term impacts of a schooling conditional cash transfer program on the sexual behavior of young women. Health Econ. 2010;19:55–68.CrossRefPubMedGoogle Scholar
  3. 3.
    Baird S, McIntosh C, Ozler B. Cash or condition? Evidence from a cash transfer experiment. Q J Econ. 2011;126(4):1709–53.CrossRefGoogle Scholar
  4. 4.
    Baird S, de Hoop J, Ozler B. Income shocks and adolescent mental health. J Hum Resour Spr. 2013;48(2):370–403.Google Scholar
  5. 5.
    Higgins ST. Comments on contingency management and conditional cash transfers. Health Econ. 2009;19:1255–8.CrossRefGoogle Scholar
  6. 6.
    Haug NA, Sorensen JL. Contingency management interventions for HIV-related behaviors. Curr HIV/AIDS Rep. 2006;3(4):154–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Hanlon J, Barrientos A, Hulme D. Just give money to the poor: the development revolution from the global south. Sterling: Kumarian Press; 2010.Google Scholar
  8. 8.
    de Walque D, Dow WH, Nathan R, et al. Incentivising safe sex: a randomised trial of conditional cash transfers for HIV and sexually transmitted infection prevention in rural Tanzania. BMJ Open. 2012;2:e000747.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baird SJ, Garfein RS, McIntosh CT, Ozler B. Effect of a cash transfer programme for schooling on prevalence of HIV and herpes simplex type 2 in Malawi: a cluster randomised trial. Lancet. 2012;379(9823):1320–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Thornton RL. The demand for, and impact of, learning HIV status. Am Econ Rev. 2008;98(5):1829–63.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Björkman-Nyqvist M, Corno L, de Walque D, Svensson J. Using lotteries to incentivize safer sexual behavior: evidence from a randomized controlled trial on HIV prevention. World bank policy research working paper 7215. 2015.Google Scholar
  12. 12.
    Galárraga O, Sosa-Rubí SG. Male sex workers: HIV risk and behavioral economics. In: Shah M, Cunningham S, editors. Handbook on the economics of prostitution. New York: Oxford University Press; 2016.Google Scholar
  13. 13.
    Beyrer C, Crago AL, Bekker LG, et al. An action agenda for HIV and sex workers. Lancet. 2015;385(9964):287–301.CrossRefPubMedGoogle Scholar
  14. 14.
    Baral SD, Friedman MR, Geibel S, et al. Male sex workers: practices, contexts, and vulnerabilities for HIV acquisition and transmission. Lancet. 2015;385(9964):260–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Aggleton P, Parker RG. Men who sell sex: global perspectives. New York: Routledge; 2015.Google Scholar
  16. 16.
    Minichiello V, Scott J. Male sex work and society. New York: Harrington Park Press; 2014.CrossRefGoogle Scholar
  17. 17.
    Aggleton P. Men who sell sex: international perspectives on male prostitution and HIV/AIDS. Philadelphia: Temple University Press; 1999.CrossRefGoogle Scholar
  18. 18.
    Galárraga O, Sosa-Rubi SG, Infante C, Gertler PJ, Bertozzi SM. Willingness-to-accept reductions in HIV risks: conditional economic incentives in Mexico. Eur J Health Econ. 2014;15(1):41–55.CrossRefPubMedGoogle Scholar
  19. 19.
    Infante C, Sosa-Rubi SG, Cuadra SM. Sex work in Mexico: vulnerability of male, travesti, transgender and transsexual sex workers. Cult Health Sex. 2009;11(2):125–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Monteiro JF, Marshall BD, Escudero D, et al. Preventing HIV transmission among partners of HIV-positive male sex workers in mexico city: a modeling study. AIDS Behav. 2014;19:1579–88.CrossRefGoogle Scholar
  21. 21.
    Tipos de Cambio y Resultados Históricos de las Subastas [Exchange Rates and Historical Series]. Banco de México [Central Bank of Mexico]; 2014. http://www.banxico.org.mx.
  22. 22.
    Sethi G, Holden BM, Gaffney J, Greene L, Ghani AC, Ward H. HIV, sexually transmitted infections, and risk behaviours in male sex workers in London over a 10 year period. Sex Transm Infect. 2006;82(5):359–63.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    National Research Council. The prevention and treatment of missing data in clinical trials. Washington: NRC; 2010.Google Scholar
  24. 24.
    Hausman JA, Wise DA. Attrition bias in experimental and panel data—gary income-maintenance experiment. Econometrica. 1979;47(2):455–73.CrossRefGoogle Scholar
  25. 25.
    Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression-models for repeated outcomes in the presence of missing data. J Am Stat Assoc. 1995;90(429):106–21.CrossRefGoogle Scholar
  26. 26.
    Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology. 2000;11(5):561–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Hernán MA, Robins JM. Causal inference. Boca Raton: Chapman & Hall/CRC; 2016.Google Scholar
  29. 29.
    Moffitt R, Fitzgerald J, Gottschalk P. Sample attrition in panel data: the role of selection on observables. Ann Econ Stat. 1999;55(56):129–52.Google Scholar
  30. 30.
    Fitzgerald J, Gottschalk P, Moffitt R. An analysis of the impact of sample attrition on the second generation of respondents in the Michigan panel study of income dynamics. J Hum Resour. 1998;33(2):300–44.CrossRefGoogle Scholar
  31. 31.
    Fitzgerald J, Gottschalk P, Moffitt R. An analysis of sample attrition in panel data—the Michigan panel study of income dynamic. J Hum Resour. 1998;33(2):251–99.CrossRefGoogle Scholar
  32. 32.
    Aidala AA, Wilson MG, Shubert V, et al. Housing status, medical care, and health outcomes among people living with HIV/AIDS: a systematic review. Am J Public Health. 2016;106(1):e1–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    CENSIDA. Mexico: UNGASS report 2014. Mexico City: Centro Nacional para la prevención y el control del VIH y el sida (CENSIDA). http://www.unaids.org/sites/default/files/country/documents//MEX_narrative_report_2014.pdf; 2014.
  34. 34.
    Bautista-Arredondo S, Colchero MA, Romero M, Conde-Glez CJ, Sosa-Rubi SG. Is the HIV epidemic stable among MSM in Mexico? HIV prevalence and risk behavior results from a nationally representative survey among men who have sex with men. PLoS ONE. 2013;8(9):e72616.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    CENSIDA. Mexico: UNGASS report 2015. Mexico City: Centro Nacional para la prevención y el control del VIH y el sida (CENSIDA). http://www.unaids.org/sites/default/files/country/documents/MEX_narrative_report_2015.pdf; 2015.
  36. 36.
    Infante C. Vulnerability and risk for HIV infection among male, transvestite, transgender and transsexual sex workers in Mexico City. Cult Health Sex. 2009;11(S1):S70–1.Google Scholar
  37. 37.
    Mexico City Government. Gaceta Oficial del Distrito Federal. http://www.cmicdf.org/docs/gaceta_GDF/2015/Julio/21-07-15-137.pdf GdDF, ed. No. 137, p. 199. Mexico City; 2015.
  38. 38.
    SAT. Minimum daily wages in Mexico http://www.sat.gob.mx/informacion_fiscal/tablas_indicadores/Paginas/salarios_minimos.aspx. In: Servicio de Administración Tributaria (SAT) [Mexican Internal Revenue Service], ed. Mexico City; 2015.
  39. 39.
    Galarraga O, Sosa-Rubi SG, Gonzalez A, et al. The disproportionate burden of HIV and STIs among male sex workers in Mexico City and the rationale for economic incentives to reduce risks. J Int AIDS Soc. 2014;17:19218.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thirumurthy H, Masters SH, Rao S, et al. Effect of providing conditional economic compensation on uptake of voluntary medical male circumcision in Kenya: a randomized clinical trial. JAMA. 2014;312(7):703–11.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pega F, Liu SY, Walter S, Lhachimi SK. Unconditional cash transfers for assistance in humanitarian disasters: effect on use of health services and health outcomes in low- and middle-income countries. Cochrane Database Syst Rev. 2015;9:CD011247.Google Scholar
  42. 42.
    Pettifor A, MacPhail C, Nguyen N, Rosenberg M. Can money prevent the spread of HIV? A review of cash payments for HIV prevention. AIDS Behav. 2012;16(7):1729–38.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kohler HP, Thornton R. Conditional cash transfers and HIV/AIDS prevention: unconditionally promising? World Bank Econ Rev. 2012;26(2):165–90.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    List JA, Gallet CA. What experimental protocol influence disparities between actual and hypothetical stated values? Environ Resour Econ. 2001;20(3):241–54.CrossRefGoogle Scholar
  45. 45.
    Medlin C, Walque Dd, World Bank. Potential applications of conditional cash transfers for prevention of sexually transmitted infections and HIV in Sub-Saharan Africa. Policy research working paper 4673. Washington, DC: World Bank; 2008. http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469372&piPK=64165421&menuPK=64166093&entityID=000158349_20080722084441.
  46. 46.
    Cheng TC, Trivedi PK. Attrition bias in panel data: a sheep in Wolf’s clothing? A case study based on the Mabel survey. Health Econ. 2015;24(9):1101–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Jones AM, Koolman X, Rice N. Health-related non-response in the British household panel survey and European community household panel: using inverse-probability-weighted estimators in non-linear models. J R Stat Soc A Stat. 2006;169:543–69.CrossRefGoogle Scholar
  48. 48.
    Minnis AM, Steiner MJ, Gallo MF, et al. Biomarker validation of reports of recent sexual activity: results of a randomized controlled study in Zimbabwe. Am J Epidemiol. 2009;170(7):918–24.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    de Walque D, Gertler PJ, Bautista-Arredondo S, et al. Using provider performance incentives to increase HIV testing and counseling services in Rwanda. J Health Econ. 2015;40:1–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Omar Galárraga
    • 1
  • Sandra G. Sosa-Rubí
    • 2
  • Caroline Kuo
    • 1
  • Pedro Gozalo
    • 1
  • Andrea González
    • 3
  • Biani Saavedra
    • 2
  • Nathalie Gras-Allain
    • 3
  • Carlos J. Conde-Glez
    • 2
  • Maria Olamendi-Portugal
    • 2
  • Kenneth H. Mayer
    • 4
  • Don Operario
    • 1
  1. 1.Brown University School of Public HealthProvidenceUSA
  2. 2.National Institute of Public Health (INSP)CuernavacaMexico
  3. 3.Clínica CondesaMexico CityMexico
  4. 4.Fenway Health, Beth Israel Deaconess Medical CenterHarvard UniversityBostonUSA

Personalised recommendations