AIDS and Behavior

, Volume 21, Issue 12, pp 3557–3566 | Cite as

Neighborhood Characteristics Associated with Achievement and Maintenance of HIV Viral Suppression Among Persons Newly Diagnosed with HIV in New York City

  • Ellen W. Wiewel
  • Luisa N. Borrell
  • Heidi E. Jones
  • Andrew R. Maroko
  • Lucia V. Torian
Original Paper


We investigated the effect of neighborhood characteristics on achievement and maintenance of HIV viral suppression among New York City (NYC) residents aged 13 years and older diagnosed between 2006 and 2012. Individual records from the NYC HIV surveillance registry (n = 12,547) were linked to U.S. Census and American Community Survey data by census tract of residence. Multivariable proportional hazards regression models indicated the likelihood of achievement and maintenance of suppression by neighborhood characteristics including poverty, accounting for neighborhood clustering and for individual characteristics. In adjusted analyses, no neighborhood factors were associated with achievement of suppression. However, residents of high- or very-high-poverty neighborhoods were less likely than residents of low-poverty neighborhoods to maintain suppression. In conclusion, higher neighborhood poverty was associated with lesser maintenance of suppression. Assistance with post-diagnosis retention in care, antiretroviral therapy prescribing, or adherence targeted to residents of higher-poverty neighborhoods may improve maintenance of viral suppression in NYC.


Se evaluaron las características del vecindario con relación al logro inicial y mantenimiento de la supresión de la carga viral de VIH, entre personas de 13 años de edad o más, que residen en la Ciudad de Nueva York, y que fueron diagnosticados con VIH entre el año 2006 y el 2012. Los archivos individuales (n = 12547) del registro de vigilancia de VIH de la Ciudad de Nueva York fueron vinculados con los datos del Censo de los Estados Unidos y de la Encuesta sobre la Comunidad Estadounidense por sección censal de residencia. Modelos multivariables de regresión de Cox mostraron la asociación del logro inicial de la supresión de la carga viral y su mantenimiento con características de vecindario incluyendo la pobreza, teniendo en cuenta la agrupación de vecindarios y características individuales. En análisis ajustados, no se encontró ningún factor de los vecindarios asociado con el logro inicial de la supresión. Sin embargo, los residentes de vecindarios con alto o muy alto nivel de pobreza tuvieron menos probabilidad de mantener la supresión, que los residentes de vecindarios con un nivel de pobreza bajo. En conclusión, los residentes de vecindarios con altos niveles de pobreza tuvieron un menor mantenimiento de la supresión de la carga viral. Asistencia con la retención de cuidado médico posterior al diagnóstico, la prescripción de terapia antirretroviral, o adherencia al tratamiento, que es dirigida a los residentes de vecindarios de altos niveles de pobreza, podría mejorar el mantenimiento de la supresión viral en la Ciudad de Nueva York.



We thank Dr. Qiang Xia for sharing SAS code and exclusion criteria related to measuring viral suppression among persons newly diagnosed with HIV, and laboratory reporting completeness estimates. For their geocoding of data on the residences of New Yorkers with HIV, we are indebted to Heidi Westermann Gortakowski, Hani Nasrallah, and Dr. Arpi Terzian. We thank Susan Resnick for providing the network dataset for the network analysis of distance between place of residence and medical facility. Drs. Sarah Braunstein, Demetre Daskalakis, Kent Sepkowitz, and Mary Irvine provided helpful suggestions in the writing of the manuscript. We are grateful to Eleonora Jimenez-Levi and Dr. Luis Roberto Rodríguez-Porras for their assistance in the Spanish translation of the abstract.

Compliance with Ethical Standards

Conflicts of interest

The authors have no potential conflicts of interest to disclose.

Ethical Approval

Ethical approval for these analyses was provided by the Institutional Review Boards of Lehman College of the City University of New York and of the New York City Department of Health and Mental Hygiene. These were secondary analyses of existing data. No recruitment, consent, interaction or intervention occurred with human subjects. The analyses did not involve animals.

Supplementary material

10461_2017_1700_MOESM1_ESM.docx (34 kb)
Supplementary material 1 (DOCX 34 kb)


  1. 1.
    Kaplan JE, et al. Viral load as an independent risk factor for opportunistic infections in HIV-infected adults and adolescents. AIDS. 2001;15(14):1831–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Attia S, et al. Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS. 2009;23(11):1397–404.CrossRefPubMedGoogle Scholar
  3. 3.
    The White House Office of National AIDS Policy. National HIV/AIDS Strategy for the United States. Washington, DC; July 2010.Google Scholar
  4. 4.
    Gardner EM, et al. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis. 2011;52(6):793–800.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moore RD, Bartlett JG. Dramatic decline in the HIV-1 RNA level over calendar time in a large urban HIV practice. Clin Infect Dis. 2011;53(6):600–4.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Novak RM, et al. Disparities in initiation of combination antiretroviral treatment and in virologic suppression among patients in the HIV Outpatient Study (HOPS), 2000–2013. J Acquir Immune Defic Syndr. 2015;70:23–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Centers for Disease Control and Prevention. Vital signs: HIV prevention through care and treatment–United States. MMWR Morb Mortal Wkly Rep. 2011;60(47):1618–23.Google Scholar
  8. 8.
    Torian LV, Xia Q, Wiewel EW. Retention in care and viral suppression among persons living with HIV/AIDS in New York City, 2006–2010. Am J Public Health. 2014;104(9):e24–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wiewel EW, et al. Monitoring outcomes for newly diagnosed and prevalent HIV cases using a care continuum created with New York City surveillance data. JAIDS J Acquir Immune Defic Syndr. 2015;68(2):217–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Yehia BR, et al. Sustained viral suppression in HIV-infected patients receiving antiretroviral therapy. JAMA. 2012;308(4):339–42.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Torian LV, Xia Q. Achievement and maintenance of viral suppression in persons newly diagnosed with HIV, New York City, 2006–2009: using population surveillance data to measure the treatment part of “test and treat”. J Acquir Immune Defic Syndr. 2013;63(3):379–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Soon GG, et al. Meta-analysis of gender differences in efficacy outcomes for HIV-positive subjects in randomized controlled clinical trials of antiretroviral therapy (2000–2008). AIDS Patient Care STDS. 2012;26(8):444–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Benbow N, et al. Linkage, retention, ART use and viral suppression in four large cities in the United States. In: International AIDS Conference, Washington, DC; 2012.Google Scholar
  14. 14.
    Valdez H, et al. Human immunodeficiency virus 1 protease inhibitors in clinical practice: predictors of virological outcome. Arch Intern Med. 1999;159(15):1771–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Beer L, et al. Racial disparities in antiretroviral therapy use and viral suppression among sexually active HIV-infected men who have sex with men—United States, Medical Monitoring Project, 2009. In: International AIDS Conference, July 23, Washington, DC; 2012.Google Scholar
  16. 16.
    Dombrowski JC, et al. Population-based metrics for the timing of HIV diagnosis, engagement in HIV care, and virologic suppression. AIDS. 2012;26(1):77–86.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shacham E, et al. The interplay of sociodemographic factors on virologic suppression among a U.S. outpatient HIV clinic population. AIDS Patient Care STDS. 2010;24(4):229–35.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weintrob AC, et al. Virologic response differences between African Americans and European Americans initiating highly active antiretroviral therapy with equal access to care. J Acquir Immune Defic Syndr. 2009;52(5):574–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Millett GA, et al. Comparisons of disparities and risks of HIV infection in black and other men who have sex with men in Canada, UK, and USA: a meta-analysis. Lancet. 2012;380(9839):341–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Phillips AN, et al. HIV viral load response to antiretroviral therapy according to the baseline CD4 cell count and viral load. JAMA. 2001;286(20):2560–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Paredes R, et al. Predictors of virological success and ensuing failure in HIV-positive patients starting highly active antiretroviral therapy in Europe: results from the EuroSIDA study. Arch Intern Med. 2000;160(8):1123–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Xia Q, et al. Comparison of indicators measuring the proportion of human immunodeficiency virus-infected persons with a suppressed viral load. Ann Epidemiol. 2015;25:226–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Joy R, et al. Impact of neighborhood-level socioeconomic status on HIV disease progression in a universal health care setting. J Acquir Immune Defic Syndr. 2008;47(4):500–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Wood E, et al. Socioeconomic status, access to triple therapy, and survival from HIV-disease since 1996. AIDS. 2002;16(15):2065–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Ickovics JR, Meade CS. Adherence to antiretroviral therapy among patients with HIV: a critical link between behavioral and biomedical sciences. J Acquir Immune Defic Syndr. 2002;31(Suppl 3):S98–102.CrossRefPubMedGoogle Scholar
  26. 26.
    Kitahata MM, Van Rompaey SE, Shields AW. Physician experience in the care of HIV-infected persons is associated with earlier adoption of new antiretroviral therapy. J Acquir Immune Defic Syndr. 2000;24(2):106–14.CrossRefPubMedGoogle Scholar
  27. 27.
    Wiewel EW, et al. The association between area-based poverty and HIV diagnoses: findings from New York City. Public Health Rep. 2016;131(2):290–302.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gant Z, et al. A county-level examination of the relationship between HIV and social determinants of health: 40 states, 2006–2008. Open AIDS J. 2012;6:1–7.CrossRefGoogle Scholar
  29. 29.
    Song R, et al. Identifying the impact of social determinants of health on disease rates using correlation analysis of area-based summary information. Public Health Rep. 2011;126(Suppl 3):70–80.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lopez-De Fede A, et al. Spatial visualization of multivariate datasets: an analysis of STD and HIV/AIDS diagnosis rates and socioeconomic context using ring maps. Public Health Rep. 2011;126(Suppl 3):115–26.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    An Q, et al. Association between community socioeconomic position and HIV diagnosis rate among adults and adolescents in the United States, 2005 to 2009. Am J Public Health. 2013;103(1):120–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shacham E, et al. Are neighborhood conditions associated with HIV management? HIV Med. 2013;14(10):624–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Yen IH, Kaplan GA. Neighborhood social environment and risk of death: multilevel evidence from the Alameda County Study. Am J Epidemiol. 1999;149(10):898–907.CrossRefPubMedGoogle Scholar
  34. 34.
    Lazar R, et al. Neighborhood poverty and infectious diseases: health disparities in New York City. New York City Department of Health and Mental Hygiene: Epi Data Brief; 2016. p. 1–3.Google Scholar
  35. 35.
    Terzian AS, et al. Novel use of surveillance data to detect HIV-infected persons with sustained high viral load and durable virologic suppression in New York City. PLoS ONE. 2012;7(1):e29679.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stadelmann L, et al. Changes in HIV viral load suppression among HIV + New Yorkers, 2006–2007 to 2010–2011. In: Conference on Retroviruses and Opportunistic Infections, Atlanta; 2013.Google Scholar
  37. 37.
    Beer L, et al. Disparities in HIV transmission risk among HIV-infected black and white men who have sex with men, United States, 2009. AIDS. 2014;28(1):105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    US Census Bureau. US Census Bureau 2010 Census. February 20, 2015]; Available from:
  39. 39.
    US Census Bureau. American Community Survey. February 20, 2015]; Available from:
  40. 40.
    US Census Bureau. Guidance for Data Users Main. March 8, 2013]; Available from:
  41. 41.
    Gordon D. Relative frequency of different below-limit VL ranges over time, S.L. Braunstein, Editor; 2011.Google Scholar
  42. 42.
    Cozzi-Lepri A, et al. Changes in viral load in people with virological failure who remain on the same HAART regimen. Antivir Ther. 2003;8(2):127–36.PubMedGoogle Scholar
  43. 43.
    Quinn TC, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342(13):921–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. December 1, 2009, Department of Health and Human Services.Google Scholar
  45. 45.
    Xia Q, et al. Proportions of patients with HIV retained in care and virally suppressed in New York City and the United States: higher than we thought. J Acquir Immune Defic Syndr. 2015;68(3):351–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Krieger N, et al. Monitoring socioeconomic inequalities in sexually transmitted infections, tuberculosis, and violence: geocoding and choice of area-based socioeconomic measures–the public health disparities geocoding project (US). Public Health Rep. 2003;118(3):240–60.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Centers for Disease Control and Prevention. Social determinants of health among adults with diagnosed HIV infection in 18 areas, 2005–2009. HIV Surveillance Supplemental Report. 2013; 18(4). Published April 2013. Accessed 24 April 2013.
  48. 48.
    Toprani, A, Hadler J. Selecting and applying a standard area-based socioeconomic status measure for public health data: analysis for New York City, in Epi Research Report, New York City Department of Health and Mental Hygiene; 2013, pp. 1–12.Google Scholar
  49. 49.
    Panel on Clinical Practices for Treatment of HIV Infection, Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 7 April 2005, Department of Health and Human Services.Google Scholar
  50. 50.
    Panel on Antiretroviral Guidelines for Adults and Adolescents, Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. 1 December 2007, Department of Health and Human Services.Google Scholar
  51. 51.
    Lee EW, Wei LJ, Amato DA. Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Klein JP, Goel PK, editors. Survival analysis: state of the art. Dordrecht: Kluwer Academic Publishers; 1992.Google Scholar
  52. 52.
    Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. J Am Stat Assoc. 1989;84(408):1074–8.CrossRefGoogle Scholar
  53. 53.
    Population Division of the New York City Department of City Planning. Table PL-P2A NYC: Total population by mutually exclusive race and Hispanic origin, New York City and boroughs, 1990 to 2010. 2011 May 28, 2015]; Available from:
  54. 54.
    Eberhart MG, et al. Individual and community factors associated with geographic clusters of poor HIV care retention and poor viral suppression. JAIDS J Acquir Immune Defic Syndr. 2015;69:S37–43.CrossRefPubMedGoogle Scholar
  55. 55.
    Dickersin K. The existence of publication bias and risk factors for its occurrence. JAMA. 1990;263(10):1385–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Dwan K, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias—an updated review. PLoS ONE. 2013;8(7):e66844.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Irvine MK, et al. Come as you are: improving care engagement and viral load suppression among HIV care coordination clients with lower mental health functioning, unstable housing, and hard drug use. AIDS Behav. 2016;. doi: 10.1007/s10461-016-1460-4.PubMedPubMedCentralGoogle Scholar
  58. 58.
    New York State Office of the Governor. Governor Cuomo announces all HIV-positive individuals in New York City to become eligible for housing, transportation and nutritional support. NY: Albany; 2016.Google Scholar
  59. 59.
    Cornelius T, et al. Impact of food, housing, and transportation insecurity on ART adherence: a hierarchical resources approach. AIDS Care. 2016;. doi: 10.1080/09540121.2016.1258451.PubMedGoogle Scholar
  60. 60.
    Hanna D, Weglein D, Begier E. Increase in out-migration in persons reported with AIDS in New York City since the introduction of HAART. In: XVII International AIDS Conference, Mexico City, Mexico; 2008.Google Scholar
  61. 61.
    HIV Epidemiology and Field Services Program. HIV/AIDS annual surveillance statistics. February 20, 2015]; Available from:
  62. 62.
    HIV Epidemiology and Field Services Program, Medical care and clinical status among persons with HIV in New York, 2014. New York City: New York City Department of Health and Mental Hygiene; 2015.Google Scholar
  63. 63.
    Chander G, et al. HAART receipt and viral suppression among HIV-infected patients with co-occurring mental illness and illicit drug use. AIDS Care. 2009;21(5):655–63.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Westergaard RP, Spaulding AC, Flanigan TP. HIV among persons incarcerated in the USA: a review of evolving concepts in testing, treatment, and linkage to community care. Curr Opin Infect Dis. 2013;26(1):10–6.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yehia BR, et al. Health outcomes of HIV-infected people with mental illness. AIDS Behav. 2015;19(8):1491–500.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Burke-Miller JK, et al. Neighborhood community characteristics associated with HIV disease outcomes in a cohort of urban women living with HIV. AIDS Care. 2016;. doi: 10.1080/09540121.2016.1173642.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Fotheringham AS, Wong DWS. The modifiable areal unit problem in multivariate statistical analysis. Environ Plan A. 1991;23(7):1024–44.CrossRefGoogle Scholar
  68. 68.
    Openshaw S. The modifiable areal unit problem. Concepts Tech Mod Geogr. 1983;38:41.Google Scholar
  69. 69.
    O’Sullivan D, Wong DWS. A surface-based approach to measuring spatial segregation. Geogr Anal. 2007;39:147–68.CrossRefGoogle Scholar
  70. 70.
    Griffith D. Towards a theory of spatial statistics. Geogr Anal. 1980;12:325–39.CrossRefGoogle Scholar
  71. 71.
    Griffith DA. The boundary value problem in spatial statistical analysis. J Reg Sci. 1983;23(3):377–87.CrossRefPubMedGoogle Scholar
  72. 72.
    Torian LV, et al. Risk factors for delayed initiation of medical care after diagnosis of human immunodeficiency virus. Arch Intern Med. 2008;168(11):1181–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Torian LV, Wiewel EW. Continuity of HIV-related medical care, New York City, 2005–2009: Do patients who initiate care stay in care? AIDS Patient Care STDS. 2011;25(2):79–88.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ellen W. Wiewel
    • 1
  • Luisa N. Borrell
    • 2
  • Heidi E. Jones
    • 2
  • Andrew R. Maroko
    • 2
  • Lucia V. Torian
    • 1
  1. 1.Division of Disease ControlNew York City Department of Health and Mental HygieneLong Island CityUSA
  2. 2.CUNY Graduate School of Public Health and Health PolicyNew YorkUSA

Personalised recommendations