AIDS and Behavior

, Volume 22, Issue 5, pp 1562–1572 | Cite as

A Longitudinal Analysis of the Impact of Physical Activity on Neurocognitive Functioning Among HIV-Infected Adults

  • Catherine A. Dufour
  • María J. Marquine
  • Pariya L. Fazeli
  • Anya Umlauf
  • Brook L. Henry
  • Zvinka Zlatar
  • Jessica L. Montoya
  • Ronald J. Ellis
  • Igor Grant
  • David J. MooreEmail author
  • HIV Neurobehavioral Research Program Group
Original Paper


Higher levels of physical activity (PA) have been linked to better neurocognitive functioning in many populations. The current study examines the longitudinal association between PA and neurocognitive functioning among HIV-infected and HIV-uninfected persons. Community-dwelling adults (N = 291) self-reported level of PA and completed a comprehensive neuropsychological battery at two to four study visits (Mean follow-up time = 2.6 years). Participants were divided into three PA groups: “No PA” (no PA at any visit), “consistent PA” (PA at ≥50% of visits), and “inconsistent PA” (PA < 50% of visits). A mixed effect model, adjusting for significant covariates showed that all PA groups had statistically significant, yet modest, neurocognitive decline over time; and, the consistent PA group began with, and maintained, significantly better neurocognitive function compared to the other two PA groups. This effect was evident among both HIV-uninfected and HIV-infected persons, despite the fact that HIV-infected persons showed lower baseline neurocognitive function. PA is a modifiable lifestyle behavior that may help to protect against neurocognitive impairment regardless of HIV status, however, given the proportion of HIV-infected individuals who evidence neurocognitive difficulties, a focus on increasing PA seems warranted.


HIV/AIDS Cognition Physical activity Exercise Neurocognitive impairment HIV-associated neurocognitive disorders 


La actividad física (AF) ha sido asociada con un mejor funcionamiento neurocognitivo en varios grupos. Este estudio examinó la asociación longitudinal entre la AF y el funcionamiento neurocognitivo en personas con y sin infección del VIH. Adultos viviendo en la comunidad (N = 291) proporcionaron información acerca de sus niveles de AF y completaron una batería neuropsicológica exhaustiva. Los participantes completaron entre dos y cuatro visitas relacionadas con el estudio (tiempo de seguimiento promedio = 2,6 años) y fueron divididos en tres grupos de AF: “Ninguna AF” (Ninguna AF durante todas las visitas del estudio), “AF Consistente” (AF durante 50% o más de las visitas del estudio), y “AF Inconsistente” (AF durante menos del 50% de las visitas del estudio). Un modelo estadístico mixto, ajustando por el efecto de variables externas, indicó que hubo una reducción estadísticamente significativa, pero poco pronunciada, en el funcionamiento neurocognitivo en todos los grupos. Además, el grupo con AF Consistente demostró un mejor funcionamiento neurocognitivo en comparación con los otros dos grupos de AF al comienzo del estudio, el cual se mantuvo durante el seguimiento. A pesar de que las personas con VIH demostraron un funcionamiento neurocognitivo más bajo al comienzo del estudio que las personas sin VIH, el efecto de AF fue demostrado en los dos grupos. Es importante recalcar que la AF es un factor de vida modificable que podría proteger contra los daños neurocognitivos independientemente de si las personas tienen o no VIH. Dada la proporción de personas con VIH que demuestran problemas neurocognitivos relacionados con esta enfermedad, será importante enfocar los esfuerzos investigativos en desarrollar formas de incrementar la AF en este grupo de personas.



The San Diego HIV Neurobehavioral Research Program group is affiliated with the University of California, San Diego, the Naval Hospital, San Diego, and the Veterans Affairs San Diego Healthcare System, and includes: Director: Robert K. Heaton, Ph.D., Co-Director: Igor Grant, M.D.; Associate Directors: J. Hampton Atkinson, M.D., Ronald J. Ellis, M.D., Ph.D., and Scott Letendre, M.D.; Center Manager: Thomas D. Marcotte, Ph.D.; Jennifer Marquie-Beck, M.P.H.; Melanie Sherman; Neuromedical Component: Ronald J. Ellis, M.D., Ph.D. (P.I.), Scott Letendre, M.D., J. Allen McCutchan, M.D., Brookie Best, Pharm.D., Rachel Schrier, Ph.D., Terry Alexander, R.N., Debra Rosario, M.P.H.; Neurobehavioral Component: Robert K. Heaton, Ph.D. (P.I.), J. Hampton Atkinson, M.D., Steven Paul Woods, Psy.D., Thomas D. Marcotte, Ph.D., Mariana Cherner, Ph.D., David J. Moore, Ph.D., Matthew Dawson; Neuroimaging Component: Christine Fennema-Notestine, Ph.D. (P.I.), Terry Jernigan, Ph.D., Monte S. Buchsbaum, M.D., John Hesselink, M.D., Sarah L. Archibald, M.A., Gregory Brown, Ph.D., Richard Buxton, Ph.D., Anders Dale, Ph.D., Thomas Liu, Ph.D.; Neurobiology Component: Eliezer Masliah, M.D. (P.I.), Cristian Achim, M.D., Ph.D., Ian Everall, FRCPsych., FRCPath., Ph.D.; Neurovirology Component: David M. Smith, M.D. (P.I.), Douglas Richman, M.D.; International Component: J. Allen McCutchan, M.D., (P.I.), Mariana Cherner, Ph.D.; Developmental Component: Cristian Achim, M.D., Ph.D.; (P.I.), Stuart Lipton, M.D., Ph.D.; Participant Accrual and Retention Unit: J. Hampton Atkinson, M.D. (P.I.), Jennifer Marquie-Beck, M.P.H.; Data Management and Information Systems Unit: Anthony C. Gamst, Ph.D. (P.I.), Clint Cushman; Statistics Unit: Ian Abramson, Ph.D. (P.I.), Florin Vaida, Ph.D. (Co-PI), Reena Deutsch, Ph.D., Anya Umlauf, M.S., Christi Kao, M.S.


The views expressed herein are those of the authors and do not reflect the official policy or position of the US government.

Compliance with Ethical Standards


The following NIH Grants provided funding for the current work: P30MH062512 and P01DA012065. Dr. Marquine is funded by K23MH105297. Dr. Fazeli is funded by K99/R00 AG048762. Dr. Zlatar is funded by K23 AG049906.

Financial Disclosure

Catherine A. Dufour declares that she has no conflict of interest. María J. Marquine declares that she has no conflict of interest. Pariya L. Fazeli declares that she has no conflict of interest. Anya Umlauf declares that she has no conflict of interest. Brook L. Henry declares that he has no conflict of interest. Zvinka Zlatar declares that she has no conflict of interest. Jessica L. Montoya declares that she has no conflict of interest. Ronald J. Ellis declares that he has no conflict of interest. Igor Grant declares that he has no conflict of interest. David J. Moore declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of California, San Diego, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Smit M, Brinkman K, Geerlings S, et al. Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis. 2015;15(7):810–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    United States Senate Special Committee on Aging. Older Americans: The Changing Face of HIV/AIDS in America. Washington, D.C., 2013.Google Scholar
  3. 3.
    Heaton RK, Clifford DB, Franklin DR, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Heaton RK, Marcotte TD, Mindt MR, et al. The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc. 2004;10(3):317–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Marcotte TD, Heaton RK, Wolfson T, et al. The impact of HIV-related neuropsychological dysfunction on driving behavior. The HNRC Group. J Int Neuropsychol Soc. 1999;5(7):579–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Thames AD, Arentoft A, Rivera-Mindt M, Hinkin CH. Functional disability in medication management and driving among individuals with HIV: A 1-year follow-up study. J Clin Exp Neuropsychol. 2013;35(1):49–58.CrossRefPubMedGoogle Scholar
  8. 8.
    McArthur JC, Hoover DR, Bacellar H, et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology. 1993;43(11):2245–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 cohort. Neurology. 2004;63(5):822–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Gajewski PD, Falkenstein M. Physical activity and neurocognitive functioning in aging—a condensed updated review. Eur Rev Aging Phys Act. 2016;13:1.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical activity and cognitive vitality. Annu Rev Psychol. 2015;66:769–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol Med. 2009;39(1):3–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med. 2011;269(1):107–17.CrossRefPubMedGoogle Scholar
  15. 15.
    Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5(75):1–9.Google Scholar
  16. 16.
    Colcombe S, Erickson K, Raz N, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):M176–80.CrossRefGoogle Scholar
  17. 17.
    Colcombe S, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. 2004;101(9):3316–21.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017–22.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kemoun G, Thibaud M, Roumagne N, et al. Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia. Dement Geriatr Cogn Disord. 2010;29(2):109–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Colcombe S, Erickson K, Scalf P, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Burdette JH, Laurienti PJ, Espeland MA, et al. Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci. 2010;2(23):1–10.Google Scholar
  23. 23.
    McGregor KM, Zlatar Z, Kleim E, et al. Physical activity and neural correlates of aging: a combined TMS/fMRI study. Behav Brain Res. 2011;222(1):158–68.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Voelcker-Rehage C, Godde B, Staudinger UM. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci. 2011;5(26):1–12.Google Scholar
  25. 25.
    Voss MW, Erickson KI, Prakash RS, et al. Functional connectivity: A source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia. 2010;48(5):1394–406.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2(32):1–17.Google Scholar
  27. 27.
    Zlatar ZZ, Towler S, McGregor KM, et al. Functional language networks in sedentary and physically active older adults. J Int Neuropsychol Soc. 2013;19(6):625–34.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murrell CJ, Cotter JD, Thomas KN, Lucas SJ, Williams MJ, Ainslie PN. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. Age. 2013;35(3):905–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q. Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J Neurosci Methods. 2010;191(2):258–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003;117(4):1037–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas BP, Yezhuvath US, Tseng BY, et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO. J Magn Reson Imaging. 2013;38(5):1–16.CrossRefGoogle Scholar
  32. 32.
    Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):2580–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Voss MW, Erickson KI, Prakash RS, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18(8):864–74.CrossRefPubMedGoogle Scholar
  35. 35.
    Nation DA, Hong S, Jak AJ, et al. Stress, exercise, and Alzheimer’s disease: a neurovascular pathway. Med Hypotheses. 2011;76(6):847–54.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dufour CA, Marquine MJ, Fazeli PL, et al. Physical exercise is associated with less neurocognitive impairment among HIV-infected adults. J Neurovirol. 2013;19(5):410–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fillipas S, Oldmeadow LB, Bailey MJ, Cherry CL. A six-month, supervised, aerobic and resistance exercise program improves self-efficacy in people with human immunodeficiency virus: a randomised controlled trial. Aust J Physiother. 2006;52(3):185–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Honn VJ, Para MF, Whitacre CC, Bornstein RA. Effect of exercise on neuropsychological performance in asymptomatic HIV infection. AIDS Behav. 1999;3(1):67–74.CrossRefGoogle Scholar
  39. 39.
    Fazeli PL, Marquine MJ, Dufour C, et al. Physical activity is associated with better neurocognitive and everyday functioning among older adults with HIV disease. AIDS Behav. 2015;19(8):1470–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fazeli PL, Woods SP, Heaton RK, et al. An active lifestyle is associated with better neurocognitive functioning in adults living with HIV infection. J Neurovirol. 2014;20(3):233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ortega M, Baker LM, Vaida F, Paul R, Basco B, Ances BM. Physical activity affects brain integrity in HIV + individuals. J Int Neuropsychol Soc. 2015;21(10):880–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heaton RK, Grant I, Butters N, et al. The HNRC 500–neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc. 1995;1(3):231–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Rippeth JD, Heaton RK, Carey CL, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10(1):1–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Woods SP, Conover E, Rippeth JD, et al. Qualitative aspects of verbal fluency in HIV-associated dementia: a deficit in rule-guided lexical-semantic search processes? Neuropsychologia. 2004;42(6):801–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Cysique LA, Franklin D Jr, Abramson I, et al. Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. J Clin Exp Neuropsychol. 2011;33(5):505–22.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Castro KG, Ward JW, Slutsker L, Buehler JW, Jaffe HW, Berkelman RL. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults: US Department of Health and Human Services; 1992.Google Scholar
  47. 47.
    Beck AT, Steer RA, Brown GK. Manual for the Beck depression inventory-II, vol. 1. San Antonio: Psychological Corporation; 1996. p. 82.Google Scholar
  48. 48.
    Wittchen HU. Reliability and validity studies of the WHO–Composite International Diagnostic Interview (CIDI): a critical review. J Psychiatr Res. 1994;28(1):57–84.CrossRefPubMedGoogle Scholar
  49. 49.
    Revicki DA, Sorensen S, Wu AW. Reliability and validity of physical and mental health summary scores from the Medical Outcomes Study HIV Health Survey. Med Care. 1998;36(2):126–37.CrossRefPubMedGoogle Scholar
  50. 50.
    Wu AW, Revicki DA, Jacobson D, Malitz FE. Evidence for reliability, validity and usefulness of the Medical Outcomes Study HIV Health Survey (MOS-HIV). Qual Life Res. 1997;6(6):481–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–713.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    O’Brien K, Nixon S, Tynan AM, Glazier R. Aerobic exercise interventions for adults living with HIV/AIDS. Cochrane Database Syst Rev. 2010;4(8):CD001796.Google Scholar
  53. 53.
    McCutchan JA, Marquie-Beck JA, Fitzsimons CA, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78(7):485–92.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Popa-Wagner A, Buga A-M, Popescu B, Muresanu D. Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle. J Neural Transm. (Vienna). 2015;122(S1):47–54.CrossRefGoogle Scholar
  55. 55.
    DeCarli C, Murphy DGM, Tranh M, et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology. 1995;45(11):2077–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Raz N, Rodrigue KM, Acker JD. Hypertension and the brain: vulnerability of the prefrontal regions and executive functions. Behav Neurosci. 2003;117(6):1169–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc. 2011;86(9):876–84.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lista I, Sorrentino G. Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol. 2010;30(4):493–503.CrossRefPubMedGoogle Scholar
  59. 59.
    Larson EB, Wang L, Bowen JD, et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144(2):73–81.CrossRefPubMedGoogle Scholar
  60. 60.
    Senso MM, Anderson CP, Crain AL, Sherwood NE, Martinson BC. Self-reported activity and accelerometry in 2 behavior maintenance trials. Am J Health Behav. 2014;38(2):254–64.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Han JL, Dinger MK. Validity of a self-administered 3-day physical activity recall in young adults. Am J Health Educ. 2009;40(1):5–13.CrossRefGoogle Scholar
  62. 62.
    Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psych Science. 2003;14(2):125–30.CrossRefGoogle Scholar
  63. 63.
    Shahandeh M, Roshan VD, Hosseinzadeh S, Mahjoub S, Sarkisian V. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate. Neural Regen Res. 2013;8(8):714–22.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fleig L, Kerschreiter R, Schwarzer R, Pomp S, Lippke S. ‘Sticking to a healthy diet is easier for me when I exercise regularly’: Cognitive transfer between physical exercise and healthy nutrition. Psychol Health. 2014;29(12):1361–72.CrossRefPubMedGoogle Scholar
  65. 65.
    Duran AC, Almeida LB, Segurado AA, Jaime PC. Diet quality of persons living with HIV/AIDS on highly active antiretroviral therapy. J Hum Nutr Diet. 2008;21(4):346–50.CrossRefPubMedGoogle Scholar
  66. 66.
    Ziegler TR, McComsey GA, Frediani JK, Millson EC, Tangpricha V, Eckard AR. Habitual nutrient intake in HIV-infected youth and associations with HIV-related factors. AIDS Res Hum Retrovir. 2014;30(9):888–95.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. Adherence to a mediterranean-style diet and effects on cognition in adults: A qualitative evaluation and systematic review of longitudinal and prospective trials. Front Nutr. 2016;3:22.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Catherine A. Dufour
    • 1
  • María J. Marquine
    • 1
  • Pariya L. Fazeli
    • 1
  • Anya Umlauf
    • 1
  • Brook L. Henry
    • 1
  • Zvinka Zlatar
    • 1
  • Jessica L. Montoya
    • 1
    • 3
  • Ronald J. Ellis
    • 1
    • 2
  • Igor Grant
    • 1
  • David J. Moore
    • 1
    Email author
  • HIV Neurobehavioral Research Program Group
  1. 1.Department of Psychiatry, HIV Neurobehavioral Research CenterUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of NeurosciencesUniversity of CaliforniaSan DiegoUSA
  3. 3.SDSU/UCSD joint Doctoral Program in Clinical PsychologySan DiegoUSA

Personalised recommendations