Trajectories of Marijuana Use among HIV-seropositive and HIV-seronegative MSM in the Multicenter AIDS Cohort Study (MACS), 1984–2013


To construct longitudinal trajectories of marijuana use in a sample of men who have sex with men living with or at-risk for HIV infection. We determined factors associated with distinct trajectories of use as well as those that serve to modify the course of the trajectory. Data were from 3658 [1439 HIV-seropositive (HIV+) and 2219 HIV-seronegative (HIV−)] participants of the Multicenter AIDS Cohort Study. Frequency of marijuana use was obtained semiannually over a 29-year period (1984–2013). Group-based trajectory models were used to identify the trajectories and to determine predictors and modifiers of the trajectories over time. Four distinct trajectories of marijuana use were identified: abstainer/infrequent (65 %), decreaser (13 %), increaser (12 %) and chronic high (10 %) use groups. HIV+ status was significantly associated with increased odds of membership in the decreaser, increaser and chronic high use groups. Alcohol, smoking, stimulant and other recreational drug use were associated with increasing marijuana use across all four trajectory groups. Antiretroviral therapy use over time was associated with decreasing marijuana use in the abstainer/infrequent and increaser trajectory groups. Having a detectable HIV viral load was associated with increasing marijuana use in the increaser group only. Future investigations are needed to determine whether long-term patterns of use are associated with adverse consequences especially among HIV+ persons.


Construir unas trayectorias longitudinal del uso de marijuana por hombres que han tenido relaciones sexuales con otros hombres y tienen o son inclinado a tener VIH. Hemos determinado los factores distinto que son asociado con las trayectorias del uso y tambien los que sirven a modificar el curso de la trayectoria. Se analizó datos de 3.658 hombres (1.439 VIH-sero-positivo y 2.219 VIH-sero-negativo) del estudio Multicenter AIDS Cohort (MACS) que han tenido relaciones sexuales con otros hombres. La frecuencia del uso de marijuana se colecto semi anual sobre 29 años (1984–2013). Utilizamos modelos de trayectoria basado en grupos para identificar las trayectorias, determinar los indicadores y modificadores de las trayectorias sobre tiempo.Identificamos cuatro distinto trayectorias del uso de marijuana: [1] abstinente/infrecuente 65 % (2) disminución de uso 13 % (3) uso creciente 12 % y (4) crónico 10 %. Se nota una correlación significativamente con hombres VIH-positivo en grupos 2, 3 y 4, En el análisis de hombres solo VHI-positivo, uso del alcohol, cigarrillos, estimulantes y otras drogas tuvieron asociado con el uso de marijuana mas creciente sobre todos los groupos de la trayectorias. Hombres que practican terapia antiretroviral estuvieron asociado con grupos 1 y 3. Hombres con niveles de viral load detectable estuvieron asociado con group 3 solamente. Se requiere mas estudios para mejor analizar si el uso a largo plazo son asociadas con las consecuencias especialmente entre personas VIH-positivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Bruce D, Harper GW, Fernandez MI. Heavy marijuana use among gay and bisexual male emerging adults living with HIV/AIDS. J HIVAIDS Soc Serv. 2013;12(1):26–48.

    Article  Google Scholar 

  2. 2.

    DʼSouza G, Matson PA, Grady CD, Nahvi S, Merenstein D, Weber KM, et al. Medicinal and recreational marijuana use among HIV-infected women in the womenʼs interagency HIV study (WIHS) cohort, 1994–2010. JAIDS J Acquir Immune Defic Syndr. 2012;61(5):618–26.

    Article  PubMed  Google Scholar 

  3. 3.

    Prentiss D, Power R, Balmas G, Tzuang G, Israelski DM. Patterns of marijuana use among patients with HIV/AIDS followed in a public health care setting. J Acquir Immune Defic Syndr. 2004;35(1):38–45.

    Article  PubMed  Google Scholar 

  4. 4.

    Mimiaga MJ, Reisner SL, Grasso C, Crane HM, Safren SA, Kitahata MM, et al. Substance use among HIV-infected patients engaged in primary care in the United States: findings from the Centers for AIDS Research Network of Integrated Clinical Systems cohort. Am J Public Health. 2013;103(8):1457–67.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Harris GE, Dupuis L, Mugford GJ, Johnston L, Haase D, Page G, et al. Patterns and correlates of cannabis use among individuals with HIV/AIDS in Maritime Canada. Can J Infect Dis Med Microbiol. 2014;25(1):e1–7.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Furler MD, Einarson TR, Millson M, Walmsley S, Bendayan R. Medicinal and recreational marijuana use by patients infected with HIV. AIDS Patient Care STDs. 2004;18(4):215–28.

    Article  PubMed  Google Scholar 

  7. 7.

    Substance Abuse and Mental Health Services Administration, Results from the 2012 National Survey on Drug Use and Health: Summary of National Findings, NSDUH Series H-46, HHS Publication No. (SMA) 13-4795. Rockville, MD: Substance Abuse and Mental Health Services Administration, 2013.

  8. 8.

    Cochran SD, Ackerman D, Mays VM, Ross MW. Prevalence of non-medical drug use and dependence among homosexually active men and women in the US population. Addiction. 2004;99(8):989–98.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    McCabe SE, Hughes TL, Bostwick WB, West BT, Boyd CJ. Sexual orientation, substance use behaviors and substance dependence in the United States. Addiction. 2009;104(8):1333–45.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ware MA, Rueda S, Singer J, Kilby D. Cannabis use by persons living with HIV/AIDS: patterns and prevalence of use. J Cannabis Ther. 2003;3(2):3–15.

    Article  Google Scholar 

  11. 11.

    Corless IB, Lindgren T, Holzemer W, Robinson L, Moezzi S, Kirksey K, et al. Marijuana effectiveness as an HIV self-care strategy. Clin Nurs Res. 2009;18(2):172–93.

    Article  PubMed  Google Scholar 

  12. 12.

    Milloy M-J, Marshall B, Kerr T, Richardson L, Hogg R, Guillemi S, et al. High-intensity cannabis use associated with lower plasma human immunodeficiency virus-1 RNA viral load among recently infected people who use injection drugs. Drug Alcohol Rev. 2015;34(2):135–40.

    Article  PubMed  Google Scholar 

  13. 13.

    Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effects of medical cannabis. Pharmacother J Hum Pharmacol Drug Ther. 2013;33(2):195–209.

    CAS  Article  Google Scholar 

  14. 14.

    Rom S, Persidsky Y. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2013;8(3):608–20.

    Article  Google Scholar 

  15. 15.

    Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci. 1990;87(5):1932–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Fusar-Poli P, Crippa JA, Bhattacharyya S, Borgwardt SJ, Allen P, Martin-Santos R, et al. Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry. 2009;66(1):95–105.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cristiani SA, Pukay-Martin ND, Bornstein RA. Marijuana use and cognitive function in HIV-infected people. J Neuropsychiatry Clin Neurosci. 2004;16(3):330–5.

    Article  PubMed  Google Scholar 

  18. 18.

    Gonzalez R, Schuster RM, Vassileva J, Martin EM. Impact of HIV and a history of marijuana dependence on procedural learning among individuals with a history of substance dependence. J Clin Exp Neuropsychol. 2011;33(7):735–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bonn-Miller MO, Oser ML, Bucossi MM, Trafton JA. Cannabis use and HIV antiretroviral therapy adherence and HIV-related symptoms. J Behav Med. 2014;37(1):1–10.

    Article  PubMed  Google Scholar 

  20. 20.

    Viswanathan S, Detels R, Mehta SH, Macatangay BJC, Kirk GD, Jacobson LP. Level of adherence and HIV RNA suppression in the current era of highly active antiretroviral therapy (HAART). AIDS Behav. 2014;19(4):601–11.

    Article  Google Scholar 

  21. 21.

    Arnett JJ. The developmental context of substance use in emerging adulthood. J Drug Issues. 2005;35(2):235–54.

    Article  Google Scholar 

  22. 22.

    Kellam SG, Others A. Paths leading to teenage psychiatric symptoms and substance use: developmental epidemiological studies in Woodlawn. 1982.

  23. 23.

    DeWit DJ, Adlaf EM, Offord DR, Ogborne AC. Age at first alcohol use: a risk factor for the development of alcohol disorders. Am J Psychiatry. 2000;157(5):745–50.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Tarter RE, Horner M, Ridenour T. Developmental perspective of substance use disorder etiology. In: Shaffer HJ, LaPlante DA, Nelson SE, editors. APA addiction syndrome handbook, vol 1: Foundations, influences, and expressions of addiction. Washington, DC, US: American Psychological Association; 2012. p. 261–87. (APA handbooks in psychology.).

  25. 25.

    Cook RL, Zhu F, Belnap BH, Weber KM, Cole SR, Vlahov D, et al. Alcohol consumption trajectory patterns in adult women with HIV infection. AIDS Behav. 2013;17(5):1705–12.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Marshall BDL, Operario D, Bryant KJ, Cook RL, Edelman EJ, Gaither JR, et al. Drinking Trajectories among HIV-Infected Men Who Have Sex With Men: A Cohort Study of United States Veterans1. Drug Alcohol Depend [Internet]. 2015.

  27. 27.

    Marshall BDL, Shoveller JA, Kahler CW, Koblin BA, Mayer KH, Mimiaga MJ, et al. Heavy drinking trajectories among men who have sex with men: a longitudinal. Group-Based Analysis. Alcohol Clin Exp Res. 2015;39(2):380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Akhtar-Khaleel WZ, Cook RL, Shoptaw S, Surkan PJ, Teplin LA, Stall R, et al. Long-term cigarette smoking trajectories among HIV-seropositive and seronegative MSM in the multicenter AIDS cohort study. AIDS Behav. 2016;27:1–9.

    Google Scholar 

  29. 29.

    Lim SH, Ostrow D, Stall R, Chmiel J, Herrick A, Shoptaw S, et al. Changes in stimulant drug use over time in the MACS: evidence for resilience against stimulant drug use among men who have sex with men. AIDS Behav. 2010;16(1):151–8.

    Article  Google Scholar 

  30. 30.

    Kaslow RA, Ostrow DG, Detels R, Phair JP, Polk BF, Rinaldo CR. The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. Am J Epidemiol. 1987;126(2):310–8.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Detels R, Phair JP, Saah AJ, Rinaldo CR, Murioz A, Kaslow RA, et al. Recent Scientific Contributions to Understanding HIV/AIDS from the Multicenter AIDS Cohort Study. J Epidemiol. 1992;2(2 sup):11–9.

    Article  Google Scholar 

  32. 32.

    Dudley J, Jin S, Hoover D, Metz S, Thackeray R, Chmiel J. The multicenter AIDS cohort study: retention after 9 1/2 years. Am J Epidemiol. 1995;142(3):323–30.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Gribble JN, Miller HG, Cooley PC, Catania JA, Pollack L, Turner CF. The impact of T-ACASI interviewing on reported drug use among men who have sex with men. Subst Use Misuse. 2000;35(6–8):869–90.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Radloff LS. The CES-D scale a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385–401.

    Article  Google Scholar 

  35. 35.

    NIAAA: National Institute of Alcohol Abuse and Alcoholism. Helping patients who drink too much: a clinician’s guide. Rockville, MD: NIAAA Publications Distribution Center; 2005.

  36. 36.

    Giorgi JV, Cheng HL, Margolick JB, Bauer KD, Ferbas J, Waxdal M, et al. Quality control in the flow cytometric measurement of T-lymphocyte subsets: the multicenter AIDS cohort study experience. The Multicenter AIDS Cohort Study Group. Clin Immunol Immunopathol. 1990;55(2):173–86.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res. 2001;29(3):374–93.

    Article  Google Scholar 

  38. 38.

    Nagin DS. Group-based Modeling of Development. Cambridge, MA: Harvard University Press; 2005.

    Google Scholar 

  39. 39.

    Brook JS, Lee JY, Brown EN, Finch SJ, Brook DW. Developmental trajectories of marijuana use from adolescence to adulthood: personality and social role outcomes1, 2. Psychol Rep. 2011;108(2):339–57.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Nelson SE, Van Ryzin MJ, Dishion TJ. Alcohol, marijuana, and tobacco use trajectories from age 12 to 24 years: demographic correlates and young adult substance use problems. Dev Psychopathol. 2015;27(Special Issue 01):253–77.

    Article  PubMed  Google Scholar 

  41. 41.

    Passarotti AM, Crane NA, Hedeker D, Mermelstein RJ. Longitudinal trajectories of marijuana use from adolescence to young adulthood. Addict Behav. 2015;45:301–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ellickson PL, Martino SC, Collins RL. Marijuana use from adolescence to young adulthood: multiple developmental trajectories and their associated outcomes. Health Psychol. 2004;23(3):299–307.

    Article  PubMed  Google Scholar 

  43. 43.

    Windle M, Wiesner M. Trajectories of marijuana use from adolescence to young adulthood: predictors and outcomes. Dev Psychopathol. 2004;16(4):1007–27.

    Article  PubMed  Google Scholar 

  44. 44.

    Schulenberg JE, Merline AC, Johnston LD, O’Malley PM, Bachman JG, Laetz VB. Trajectories of marijuana use during the transition to adulthood: the big picture based on national panel data. J Drug Issues. 2005;35(2):255–80.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Brook JS, Zhang C, Brook DW. Developmental trajectories of marijuana use from adolescence to adulthood: personal predictors. Arch Pediatr Adolesc Med. 2011;165(1):55–60.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Raftery AE. Bayesian model selection in social research. Sociol Methodol. 1995;25:111–63.

    Article  Google Scholar 

  47. 47.

    Akaike H. New look at statistical-model identification. IEEE Trans Automatic Control. 1974;19:716–23.

    Article  Google Scholar 

  48. 48.

    Juon H-S, Fothergill KE, Green KM, Doherty EE, Ensminger ME. Antecedents and consequences of marijuana use trajectories over the life course in an African American population. Drug Alcohol Depend. 2011;118(2–3):216–23.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Whitesell NR, Asdigian NL, Kaufman CE, Crow CB, Shangreau C, Keane EM, et al. Trajectories of substance use among young American Indian adolescents: patterns and predictors. J Youth Adolesc. 2013;43(3):437–53.

    Article  PubMed  Google Scholar 

  50. 50.

    Pahl K, Brook JS, Koppel J. Trajectories of marijuana use and psychological adjustment among urban African American and Puerto Rican women. Psychol Med. 2011;41(8):1775–83.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Pardini D, Bechtold J, Loeber R, White H. Developmental trajectories of marijuana use among men examining linkages with criminal behavior and psychopathic features into the mid-30s. J Res Crime Delinq. 2015;52(6):797–828.

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Brook JS, Lee JY, Finch SJ, Brook DW. Developmental trajectories of marijuana use from adolescence to adulthood: relationship with using weapons including guns. Aggress Behav. 2014;40(3):229–37.

    Article  PubMed  Google Scholar 

  53. 53.

    Brook JS, Lee JY, Brook DW. Trajectories of marijuana use beginning in adolescence predict tobacco dependence in adulthood. Subst Abuse. 2015;36(4):470–7.

    Article  Google Scholar 

  54. 54.

    Halkitis PN, Kapadia F, Bub KL, Barton S, Moreira AD, Stults CB. A longitudinal investigation of syndemic conditions among young gay, bisexual, and other MSM: the P18 Cohort Study. AIDS Behav. 2015;19(6):970–80.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Halkitis PN, Siconolfi DE, Stults CB, Barton S, Bub K, Kapadia F. Modeling substance use in emerging adult gay, bisexual, and other YMSM across time: the P18 cohort study. Drug Alcohol Depend. 2014;1(145):209–16.

    Article  Google Scholar 

  56. 56.

    Stall R, Mills TC, Williamson J, Hart T, Greenwood G, Paul J, et al. Association of co-occurring psychosocial health problems and increased vulnerability to HIV/AIDS among urban men who have sex with men. Am J Public Health. 2003;93(6):939–42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Macalino GE, Celentano DD, Latkin C, Strathdee SA, Vlahov D. Risk behaviors by audio computer-assisted self-interviews among HIV-seropositive and HIV-seronegative injection drug users. AIDS Educ Prev Off Publ Int Soc AIDS Educ. 2002;14(5):367–78.

    Article  Google Scholar 

  58. 58.

    Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychol Methods. 2003;8(3):338–63.

    Article  PubMed  Google Scholar 

  59. 59.

    Nagin DS, Tremblay RE. Developmental trajectory groups: fact or a useful statistical fiction? Criminology. 2005;43(4):873–904.

    Article  Google Scholar 

Download references


Chukwuemeka N Okafor is supported by the National Institute on Drug Abuse (F31-DA039810). Robert L Cook is supported by the National Institute on Alcohol Abuse and Alcoholism (U24-AA022002). Steve Shoptaw is supported by the National Institute on Mental Health (P30MH058107). The authors will like to thank Tariq Syed for his help in translating the abstract. Data in this manuscript were collected by the Multicenter AIDS Cohort Study (MACS) with centers at Baltimore (U01—AI35042): The Johns Hopkins University Bloomberg School of Public Health: Joseph B. Margolick (PI), Barbara Crain, Adrian Dobs, Homayoon Farzadegan, Joel Gallant, Lisette Johnson-Hill, Cynthia Munro, Michael W. Plankey, Ned Sacktor, JamesShepard, Chloe Thio; Chicago (U01-AI35039): Feinberg School of Medicine, Northwestern University, and Cook County Bureau of Health Services: Steven M. Wolinsky (PI), John P. Phair, Sheila Badri, Maurice O’Gorman, David Ostrow, Frank Palella, Ann Ragin; Los Angeles(U01-AI35040): University of California, UCLA Schools of Public Health andMedicine: Roger Detels (PI), Otoniel Martínez-Maza (Co-P I), Aaron Aronow, Robert Bolan,Elizabeth Breen, Anthony Butch, Beth Jamieson, Eric N. Miller, John Oishi, Harry Vinters,Dorothy Wiley, Mallory Witt, Otto Yang, Stephen Young, Zuo Feng Zhang; Pittsburgh (U01-AI35041): University of Pittsburgh, Graduate School of Public Health: Charles R. Rinaldo (PI),Lawrence A. Kingsley (Co-PI), James T. Becker, Ross D. Cranston, Jeremy J. Martinson, JohnW. Mellors, Anthony J. Silvestre, Ronald D. Stall; and the Data Coordinating Center (UM1-AI35043): The Johns Hopkins University Bloomberg School of Public Health: Lisa P. Jacobson(PI), Alvaro Munoz (Co-PI), Alison, Abraham, Keri Althoff, Christopher Cox, Jennifer Deal,Gypsyamber D’Souza, Priya Duggal, Janet Schollenberger, Eric C. Seaberg, Sol Su, PamelaSurkan. The MACS is funded primarily by the National Institute of Allergy and InfectiousDiseases (NIAID), with additional co-funding from the National Cancer Institute (NCI).Targeted supplemental funding for specific projects was also provided by the National Heart,Lung, and Blood Institute (NHLBI), and the National Institute on Deafness and CommunicationDisorders (NIDCD). MACS data collection is also supported by UL1-TR000424 (JHU CTSA).Website located at The contents of thispublication are solely the responsibility of the authors and do not represent the official views of the National Institutes of Health (NIH).


This study was funded by National Institute on Drug Abuse (F31-DA039810), National Institute on Alcohol Abuse and Alcoholism (U24-AA022002) and the National Institute of Mental Health (P30MH058107).

Author information



Corresponding author

Correspondence to Chukwuemeka N. Okafor.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okafor, C.N., Cook, R.L., Chen, X. et al. Trajectories of Marijuana Use among HIV-seropositive and HIV-seronegative MSM in the Multicenter AIDS Cohort Study (MACS), 1984–2013. AIDS Behav 21, 1091–1104 (2017).

Download citation


  • Marijuana use
  • MSM
  • Trajectories
  • Persons living with HIV