Skip to main content

Action Tweets Linked to Reduced County-Level HIV Prevalence in the United States: Online Messages and Structural Determinants


HIV is uncommon in most US counties but travels quickly through vulnerable communities when it strikes. Tracking behavior through social media may provide an unobtrusive, naturalistic means of predicting HIV outbreaks and understanding the behavioral and psychological factors that increase communities’ risk. General action goals, or the motivation to engage in cognitive and motor activity, may support protective health behavior (e.g., using condoms) or encourage activity indiscriminately (e.g., risky sex), resulting in mixed health effects. We explored these opposing hypotheses by regressing county-level HIV prevalence on action language (e.g., work, plan) in over 150 million tweets mapped to US counties. Controlling for demographic and structural predictors of HIV, more active language was associated with lower HIV rates. By leveraging language used on social media to improve existing predictive models of geographic variation in HIV, future targeted HIV-prevention interventions may have a better chance of reaching high-risk communities before outbreaks occur.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Noguchi K, Handley IM, Albarracín D. Participating in politics resembles physical activity: general action patterns in international archives, United States archives, and experiments. Psychol Sci. 2011;22(2):235–42. doi:10.1177/0956797610393746.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Albarracín D, Handley IM, Noguchi K, et al. Increasing and decreasing motor and cognitive output: a model of general action and inaction goals. J Pers Soc Psychol. 2008;95(3):510–23. doi:10.1037/a0012833.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hepler J, Wang W, Albarracin D. Motivating exercise: the interactive effect of general action goals and past behavior on physical activity. Motiv Emot. 2012;36(3):365–70. doi:10.1037/e527772014-020.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fleming PL. The epidemiology of HIV and AIDS. In: Wormser GP, editor. AIDS and other manifestations of HIV infection. 4th ed. London: Elsevier Academic Press; 2004. p. 3–29.

    Chapter  Google Scholar 

  5. 5.

    Karon JM, Fleming PL, Steketee RW, De Cock KM. HIV in the United States at the turn of the century: an epidemic in transition. Am J Public Health. 2001;91(7):1060–8. doi:10.2105/ajph.91.7.1060.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chesson HW, Gift TL, Owusu-Edusei K Jr, Tao G, Johnson AP, Kent CK. A brief review of the estimated economic burden of sexually transmitted diseases in the United States: inflation-adjusted updates of previously published cost studies. Sex Transm Dis. 2011;38(10):889–91. doi:10.1097/olq.0b013e318223be77.

    Article  PubMed  Google Scholar 

  7. 7.

    Owusu-Edusei K Jr, Chesson HW, Gift TL, et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40:197–201. doi:10.1097/olq.0b013e318285c6d2.

    Article  PubMed  Google Scholar 

  8. 8.

    Steiner MJ, Cates W. Condoms and sexually-transmitted infections. New Engl J Med. 2006;354(25):2642–3. doi:10.1056/NEJMp068111.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Albarracin D, Hepler J, Tannenbaum M. General action and inaction goals: their behavioral, cognitive, and affective origins and influences. Curr Dir Psychol Sci. 2011;20(2):119–23. doi:10.1177/0963721411402666.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Gendolla GHE, Silvestrini N. The implicit “go”: masked action cues directly mobilize mental effort. Psychol Sci. 2010;21(10):1389–93. doi:10.1177/0956797610384149.

    Article  PubMed  Google Scholar 

  11. 11.

    Laran J. The influence of information processing goal pursuit on postdecision affect and behavioral intentions. J Pers Soc Psychol. 2010;98(1):16–28. doi:10.1037/a0017422.

    Article  PubMed  Google Scholar 

  12. 12.

    Albarracín D, Handley IM. The time for doing is not the time for change: effects of general action and inaction goals on attitude retrieval and attitude change. J Pers Soc Psychol. 2011;100(6):983–98. doi:10.1037/a0023245.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hepler J, Albarracin D, McCulloch KC, Noguchi K. Being active and impulsive: the role of goals for action and inaction in self-control. Motiv Emot. 2012;36(4):416–24. doi:10.1007/s11031-011-9263-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Albarracin D, Hart W. Positive mood + action = negative mood + inaction: effects of general action and inaction concepts on decisions and performance as a function of affect. Emotion. 2011;11(4):951–7. doi:10.1037/a0024130.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Mino M, Deren S, Kang S-Y, Guarino H. Associations between political/civic participation and HIV drug injection risk. Am J Drug Alcohol Abuse. 2011;37(6):520–4. doi:10.3109/00952990.2011.600384.

    Article  PubMed  Google Scholar 

  16. 16.

    Fernández-Ballesteros R, Díez-Nicolás J, Caprara GV, Barbaranelli C, Bandura A. Determinants and structural relation of personal efficacy to collective efficacy. Appl Psychol-Int Rev. 2002;51(1):107. doi:10.1111/1464-0597.00081.

    Article  Google Scholar 

  17. 17.

    Galavotti C, Wheeler T, Sebert Kuhlmann A, et al. Navigating the swampy lowland: A framework for evaluating the effect of community mobilisation in female sex workers in Avahan, the India AIDS initiative. J Epidemiol Commun Health. 2012;66:ii9–15. doi:10.1136/jech-2011-200465.

    Article  Google Scholar 

  18. 18.

    Quinn TC, Wawer MJ, Sewankambo N, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. New Engl J Med. 2000;342(13):921–9. doi:10.1093/oxfordjournals.aje.a009331.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Tugade MM, Fredrickson BL, Feldman-Barrett L. Psychological resilience and positive emotional granularity: examining the benefits of positive emotions on coping and health. J Pers. 2004;72(6):1161–90. doi:10.1111/j.1467-6494.2004.00294.x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mazzucchelli T, Kane R, Rees C. Behavioral activation treatments for depression in adults: a meta-analysis and review. Clin Psychol. 2009;16(4):383–411. doi:10.1111/j.1468-2850.2009.01178.x.

    Google Scholar 

  21. 21.

    Ireland ME, Hepler J, Li H, Albarracín D. Neuroticism and attitudes toward action in 19 countries. J Pers. 2015;83(3):243–50.

    Article  PubMed  Google Scholar 

  22. 22.

    Wilson K, Senay I, Durantini M, Sanchez F, Hennessy M, Spring B, Albarracin D. When it comes to lifestyle recommendations, more is sometimes less: a meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. Psychol Bull. 2015;141(2):474–509. doi:10.1037/a0038295.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Albarracin D, Gillette JC, Earl A, Glasman LR, Durantini MR, Ho M-H. A test of major assumptions about behavior change: a comprehensive look at the effects of passive and active HIV-prevention interventions since the beginning of the epidemic. Psychol Bull. 2005;131(6):856–97. doi:10.1037/0033-2909.131.6.856.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Latkin C, Donnell D, Liu TY, Davey-Rothwell M, Celentano D, Metzger D. The dynamic relationship between social norms and behaviors: the results of an HIV prevention network intervention for injection drug users. Addiction. 2013;108:934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Latkin CA, Knowlton AR. Micro-social structural approaches to HIV prevention: a social ecological perspective. AIDS Care. 2005;17(sup1):102–13. doi:10.1080/09540120500121185.

    Article  Google Scholar 

  26. 26.

    Albarracin D, Wang W, Leeper J. Immediate increase in food intake following exercise messages. Obesity. 2009;17(7):1451–2. doi:10.1038/oby.2009.16.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Hepler J, Albarracin D. Complete unconscious control: using (in)action primes to demonstrate completely unconscious activation of inhibitory control mechanisms. Cognition. 2013;128(3):271–9. doi:10.1016/j.cognition.2013.04.012.

    Article  PubMed  Google Scholar 

  28. 28.

    Marmarosh CL, Kivlighan DM Jr. Relationships among client and counselor agreement about the working alliance, session evaluations, and change in client symptoms using response surface analysis. J Couns Psychol. 2012;59(3):352–67. doi:10.1037/a0028907.

    Article  PubMed  Google Scholar 

  29. 29.

    Pennebaker JW. Theories, therapies, and taxpayers: on the complexities of the expressive writing paradigm. Clin Psychol. 2004;11(2):138–42. doi:10.1093/clipsy.bph063.

    Google Scholar 

  30. 30.

    Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the US during the influenza a H1N1 pandemic. PLoS One. 2011;6(5):e19467. doi:10.1371/journal.pone.0019467.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Young SD, Rivers C, Lewis B. Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Prev Med. 2014;63:112–5. doi:10.1016/j.ypmed.2014.01.024.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Thompson WW, Comanor L, Shay DK. Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease. J Infect Dis. 2006;194:S82–91. doi:10.1086/507558.

    Article  PubMed  Google Scholar 

  33. 33.

    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4. doi:10.1038/nature07634.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Irvin CB, Nouhan PP, Rice K. Syndromic analysis of computerized emergency department patients’ chief complaints: an opportunity for bioterrorism and influenza surveillance. Ann Emerg Med. 2003;41(4):447–52. doi:10.1067/mem.2003.104.

    Article  PubMed  Google Scholar 

  35. 35.

    Adimora AA, Ramirez C, Schoenbach VJ, Cohen MS. Policies and politics that promote HIV infection in the southern United States. AIDS. 2014;500:13–01357. doi:10.1097/QAD.0000000000000225.

    Google Scholar 

  36. 36.

    Holmberg SD. The estimated prevalence and incidence of HIV in 96 large US metropolitan areas. Am J Public Health. 1996;86(5):642–54. doi:10.2105/ajph.86.5.642.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Rao D, Yarowsky D, Shreevats A, Gupta M. Classifying latent user attributes in twitter. Proceedings of the 2nd international workshop on Search and mining user-generated contents—SMUC’10 [Internet]. ACM Press; 2010. doi:10.1145/1871985.1871993.

  38. 38.

    Adimora AA, Schoenbach VJ. Social context, sexual networks, and racial disparities in rates of sexually transmitted infections. J Infect Dis. 2005;191:S115–22. doi:10.1086/425280.

    Article  PubMed  Google Scholar 

  39. 39.

    Prejean J, Song R, Hernandez A, et al. Estimated HIV incidence in the United States, 2006-2009. PLoS One. 2011;6(8):e17502. doi:10.1371/journal.pone.0017502.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Song R, Hall HI, Harrison KM, Sharpe TT, Lin LS, Dean HD. Identifying the impact of social determinants of health on disease rates using correlation analysis of area-based summary information. Public Health Rep. 2011;126(Suppl 3):70–80.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Shedlin MG, Deren S. Cultural factors influencing HIV risk behavior among dominicans in new york city. J Ethn Subst Abuse. 2002;1(1):71. doi:10.1300/j233v01n01_05.

    Article  Google Scholar 

  42. 42.

    Levy V, Page-Shafer K, Evans J, et al. HIV-related risk behavior among Hispanic immigrant men in a population-based household survey in low-income neighborhoods of northern California. Sex Transm Dis. 2005;32(8):487–90. doi:10.1097/01.olq.0000161185.06387.94.

    Article  PubMed  Google Scholar 

  43. 43.

    Kandula NR, Kersey M, Lurie N. Assuring the health of immigrants: what the leading health indicators tell us. Ann Rev Publ Health. 2004;25:357–76. doi:10.1146/annurev.publhealth.25.101802.123107.

    Article  Google Scholar 

  44. 44.

    Ceriani L, Verme P. The origins of the GINI index: extracts from variabilità e mutabilità (1912) by Corrado Gini. J Econ Inequal. 2011;10(3):421–43. doi:10.1007/s10888-011-9188-x.

    Article  Google Scholar 

  45. 45.

    Gini C. Variabilità e mutabilità. Bologna: C. Cuppini; 1912.

    Google Scholar 

  46. 46.

    Joy R, Druyts EF, Brandson EK, et al. Impact of neighborhood-level socioeconomic status on HIV disease progression in a universal health care setting. JAIDS. 2008;47(4):500–5. doi:10.1097/qai.0b013e3181648dfd.

    PubMed  Google Scholar 

  47. 47.

    McIntosh WA, Thomas JK. Economic and other societal determinants of the prevalence of HIV: a test of competing hypotheses. Soc Psychol Q. 2004;45(2):303–24. doi:10.1111/j.1533-8525.2004.tb00014.x.

    Google Scholar 

  48. 48.

    McMahon J, Wanke C, Terrin N, Skinner S, Knox T. Poverty, hunger, education, and residential status impact survival in HIV. AIDS Behav. 2011;15:1503–11. doi:10.1007/s10461-010-9759-z.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Krueger LE, Wood RW, Diehr PH, Maxwell CL. Poverty and HIV seropositivity: the poor are more likely to be infected. AIDS. 1990;4(8):811–4. doi:10.1097/00002030-199008000-00015.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Harrison KM, Ling Q, Song R, Hall HI. County-level socioeconomic status and survival after HIV diagnosis, United States. Ann Epidemiol. 2008;18(12):919–27. doi:10.1016/j.annepidem.2008.09.003.

    Article  Google Scholar 

  51. 51.

    Morstatter F, Pfeffer J, Liu H, Carley KM. Is the sample good enough?. AAAI: Comparing data from Twitter’s streaming API with Twitter’s firehose; 2013.

    Google Scholar 

  52. 52.

    Hecht B, Hong L, Suh B, Chi EH. Tweets from Justin Bieber’s heart: The dynamics of the location field in user profiles. SIGCHI. 2011. p. 237–46.

  53. 53.

    Schwartz HA, Eichstaedt JC, Kern ML et al. Characterizing geographic variation in well-being using Tweets. ICWSM. 2013. p. 583–91.

  54. 54.

    Pennebaker JW, Booth RE, Francis ME. Linguistic inquiry and word count: LIWC. LIWC.Net. [computer program]. 2007.

  55. 55.

    Pennebaker JW, Chung CK, Ireland M, Gonzales A, Booth RJ. The development and psychometric properties of LIWC2007 [Software manual]. 2007.

  56. 56.

    Davies M. The corpus of contemporary american english: 450 million words, 1990-present [Online linguistic corpus]. 2008.

  57. 57.

    The lme4 package: Linear mixed-effects models using s4 classes [computer program]. Version 0.999375-282009.

  58. 58.

    Pinheiro JC, Bates DM. Mixed effects models in s and s-plus. New York: Springer; 2000.

    Book  Google Scholar 

  59. 59.

    Team RDC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011.

    Google Scholar 

  60. 60.

    Bryk AS, Raudenbush SW. Hierarchical linear models: applications and data analysis methods. Newbury Park: Sage; 1992.

    Google Scholar 

  61. 61.

    Wallerstein N, Duran B. Community-based participatory research contributions to intervention research: the intersection of science and practice to improve health equity. Am J Public Health. 2010;100(Suppl 1):S40–6. doi:10.2105/ajph.2009.184036.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Chartrand TL, van Baaren R. Human mimicry. In: Zanna MP, editor. Exp Soc Psychol, vol. 41. San Diego: Elsevier Academic Press; 2009. p. 219–74. doi:10.1016/s0065-2601(08)00405-x.

    Google Scholar 

  63. 63.

    Dik G, Aarts H. Behavioral cues to others’ motivation and goal pursuits: the perception of effort facilitates goal inference and contagion. J Exp Soc Psychol. 2007;43(5):727–37. doi:10.1016/j.jesp.2006.09.002.

    Article  Google Scholar 

  64. 64.

    Ireland ME, Pennebaker JW. Language style matching in writing: synchrony in essays, correspondence, and poetry. J Pers Soc Psychol. 2010;99(3):549–71. doi:10.1037/a0020386.

    Article  PubMed  Google Scholar 

  65. 65.

    @IrisClasson. This sums up 90% of my work day. Accessed 13 April 2015.

  66. 66.

    @RealMichaelKay. Work harder than anyone else and treat people the way you want to be treated. Accessed 13 April 2015.

  67. 67.

    Tausczik YR, Pennebaker JW. The psychological meaning of words: LIWC and computerized text analysis methods. J Lang Soc Psychol. 2010;29(1):24–54. doi:10.1177/0261927x09351676.

    Article  Google Scholar 

  68. 68.

    @madpoetry. “Siri, delete my spam.” “Move all pizza coupons to inbox.” Accessed 13 April 2015.

  69. 69.

    Radinsky K, Horvitz E. Mining the web to predict future events. ACM-WSDM. 2013. doi:10.1145/2433396.2433431.

    Google Scholar 

  70. 70.

    Sadilek A, Kautz H, Silenzio V. Predicting disease transmission from geo-tagged micro-blog data. AAAI. 2012. p. 136–42.

  71. 71.

    Delcher PC, Edwards KT, Stover JA, Newman LM, Groseclose SL, Rajnik DM. Data suppression strategies used during surveillance data release by sexually transmitted disease prevention programs. J Public Health Man. 2008;14(2):E1–8. doi:10.1097/01.phh.0000311902.95948.f5.

    Google Scholar 

Download references


We are grateful to Justin Hepler and Melanie Tannenbaum for their help in creating the action dictionary, and to Micah Iserman for his figure-making assistance.

Author information



Corresponding author

Correspondence to Molly E. Ireland.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ireland, M.E., Chen, Q., Schwartz, H.A. et al. Action Tweets Linked to Reduced County-Level HIV Prevalence in the United States: Online Messages and Structural Determinants. AIDS Behav 20, 1256–1264 (2016).

Download citation


  • General action goals
  • HIV
  • Health
  • Language
  • Twitter