AIDS and Behavior

, Volume 20, Issue 6, pp 1256–1264 | Cite as

Action Tweets Linked to Reduced County-Level HIV Prevalence in the United States: Online Messages and Structural Determinants

  • Molly E. Ireland
  • Qijia Chen
  • H. Andrew Schwartz
  • Lyle H. Ungar
  • Dolores Albarracin
Original Paper

Abstract

HIV is uncommon in most US counties but travels quickly through vulnerable communities when it strikes. Tracking behavior through social media may provide an unobtrusive, naturalistic means of predicting HIV outbreaks and understanding the behavioral and psychological factors that increase communities’ risk. General action goals, or the motivation to engage in cognitive and motor activity, may support protective health behavior (e.g., using condoms) or encourage activity indiscriminately (e.g., risky sex), resulting in mixed health effects. We explored these opposing hypotheses by regressing county-level HIV prevalence on action language (e.g., work, plan) in over 150 million tweets mapped to US counties. Controlling for demographic and structural predictors of HIV, more active language was associated with lower HIV rates. By leveraging language used on social media to improve existing predictive models of geographic variation in HIV, future targeted HIV-prevention interventions may have a better chance of reaching high-risk communities before outbreaks occur.

Keywords

General action goals HIV Health Language Twitter 

References

  1. 1.
    Noguchi K, Handley IM, Albarracín D. Participating in politics resembles physical activity: general action patterns in international archives, United States archives, and experiments. Psychol Sci. 2011;22(2):235–42. doi:10.1177/0956797610393746.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Albarracín D, Handley IM, Noguchi K, et al. Increasing and decreasing motor and cognitive output: a model of general action and inaction goals. J Pers Soc Psychol. 2008;95(3):510–23. doi:10.1037/a0012833.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hepler J, Wang W, Albarracin D. Motivating exercise: the interactive effect of general action goals and past behavior on physical activity. Motiv Emot. 2012;36(3):365–70. doi:10.1037/e527772014-020.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fleming PL. The epidemiology of HIV and AIDS. In: Wormser GP, editor. AIDS and other manifestations of HIV infection. 4th ed. London: Elsevier Academic Press; 2004. p. 3–29.CrossRefGoogle Scholar
  5. 5.
    Karon JM, Fleming PL, Steketee RW, De Cock KM. HIV in the United States at the turn of the century: an epidemic in transition. Am J Public Health. 2001;91(7):1060–8. doi:10.2105/ajph.91.7.1060.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chesson HW, Gift TL, Owusu-Edusei K Jr, Tao G, Johnson AP, Kent CK. A brief review of the estimated economic burden of sexually transmitted diseases in the United States: inflation-adjusted updates of previously published cost studies. Sex Transm Dis. 2011;38(10):889–91. doi:10.1097/olq.0b013e318223be77.CrossRefPubMedGoogle Scholar
  7. 7.
    Owusu-Edusei K Jr, Chesson HW, Gift TL, et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40:197–201. doi:10.1097/olq.0b013e318285c6d2.CrossRefPubMedGoogle Scholar
  8. 8.
    Steiner MJ, Cates W. Condoms and sexually-transmitted infections. New Engl J Med. 2006;354(25):2642–3. doi:10.1056/NEJMp068111.CrossRefPubMedGoogle Scholar
  9. 9.
    Albarracin D, Hepler J, Tannenbaum M. General action and inaction goals: their behavioral, cognitive, and affective origins and influences. Curr Dir Psychol Sci. 2011;20(2):119–23. doi:10.1177/0963721411402666.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gendolla GHE, Silvestrini N. The implicit “go”: masked action cues directly mobilize mental effort. Psychol Sci. 2010;21(10):1389–93. doi:10.1177/0956797610384149.CrossRefPubMedGoogle Scholar
  11. 11.
    Laran J. The influence of information processing goal pursuit on postdecision affect and behavioral intentions. J Pers Soc Psychol. 2010;98(1):16–28. doi:10.1037/a0017422.CrossRefPubMedGoogle Scholar
  12. 12.
    Albarracín D, Handley IM. The time for doing is not the time for change: effects of general action and inaction goals on attitude retrieval and attitude change. J Pers Soc Psychol. 2011;100(6):983–98. doi:10.1037/a0023245.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hepler J, Albarracin D, McCulloch KC, Noguchi K. Being active and impulsive: the role of goals for action and inaction in self-control. Motiv Emot. 2012;36(4):416–24. doi:10.1007/s11031-011-9263-4.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Albarracin D, Hart W. Positive mood + action = negative mood + inaction: effects of general action and inaction concepts on decisions and performance as a function of affect. Emotion. 2011;11(4):951–7. doi:10.1037/a0024130.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mino M, Deren S, Kang S-Y, Guarino H. Associations between political/civic participation and HIV drug injection risk. Am J Drug Alcohol Abuse. 2011;37(6):520–4. doi:10.3109/00952990.2011.600384.CrossRefPubMedGoogle Scholar
  16. 16.
    Fernández-Ballesteros R, Díez-Nicolás J, Caprara GV, Barbaranelli C, Bandura A. Determinants and structural relation of personal efficacy to collective efficacy. Appl Psychol-Int Rev. 2002;51(1):107. doi:10.1111/1464-0597.00081.CrossRefGoogle Scholar
  17. 17.
    Galavotti C, Wheeler T, Sebert Kuhlmann A, et al. Navigating the swampy lowland: A framework for evaluating the effect of community mobilisation in female sex workers in Avahan, the India AIDS initiative. J Epidemiol Commun Health. 2012;66:ii9–15. doi:10.1136/jech-2011-200465.CrossRefGoogle Scholar
  18. 18.
    Quinn TC, Wawer MJ, Sewankambo N, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. New Engl J Med. 2000;342(13):921–9. doi:10.1093/oxfordjournals.aje.a009331.CrossRefPubMedGoogle Scholar
  19. 19.
    Tugade MM, Fredrickson BL, Feldman-Barrett L. Psychological resilience and positive emotional granularity: examining the benefits of positive emotions on coping and health. J Pers. 2004;72(6):1161–90. doi:10.1111/j.1467-6494.2004.00294.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mazzucchelli T, Kane R, Rees C. Behavioral activation treatments for depression in adults: a meta-analysis and review. Clin Psychol. 2009;16(4):383–411. doi:10.1111/j.1468-2850.2009.01178.x.Google Scholar
  21. 21.
    Ireland ME, Hepler J, Li H, Albarracín D. Neuroticism and attitudes toward action in 19 countries. J Pers. 2015;83(3):243–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson K, Senay I, Durantini M, Sanchez F, Hennessy M, Spring B, Albarracin D. When it comes to lifestyle recommendations, more is sometimes less: a meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. Psychol Bull. 2015;141(2):474–509. doi:10.1037/a0038295.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Albarracin D, Gillette JC, Earl A, Glasman LR, Durantini MR, Ho M-H. A test of major assumptions about behavior change: a comprehensive look at the effects of passive and active HIV-prevention interventions since the beginning of the epidemic. Psychol Bull. 2005;131(6):856–97. doi:10.1037/0033-2909.131.6.856.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Latkin C, Donnell D, Liu TY, Davey-Rothwell M, Celentano D, Metzger D. The dynamic relationship between social norms and behaviors: the results of an HIV prevention network intervention for injection drug users. Addiction. 2013;108:934–43.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Latkin CA, Knowlton AR. Micro-social structural approaches to HIV prevention: a social ecological perspective. AIDS Care. 2005;17(sup1):102–13. doi:10.1080/09540120500121185.CrossRefGoogle Scholar
  26. 26.
    Albarracin D, Wang W, Leeper J. Immediate increase in food intake following exercise messages. Obesity. 2009;17(7):1451–2. doi:10.1038/oby.2009.16.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hepler J, Albarracin D. Complete unconscious control: using (in)action primes to demonstrate completely unconscious activation of inhibitory control mechanisms. Cognition. 2013;128(3):271–9. doi:10.1016/j.cognition.2013.04.012.CrossRefPubMedGoogle Scholar
  28. 28.
    Marmarosh CL, Kivlighan DM Jr. Relationships among client and counselor agreement about the working alliance, session evaluations, and change in client symptoms using response surface analysis. J Couns Psychol. 2012;59(3):352–67. doi:10.1037/a0028907.CrossRefPubMedGoogle Scholar
  29. 29.
    Pennebaker JW. Theories, therapies, and taxpayers: on the complexities of the expressive writing paradigm. Clin Psychol. 2004;11(2):138–42. doi:10.1093/clipsy.bph063.Google Scholar
  30. 30.
    Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of disease activity and public concern in the US during the influenza a H1N1 pandemic. PLoS One. 2011;6(5):e19467. doi:10.1371/journal.pone.0019467.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Young SD, Rivers C, Lewis B. Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Prev Med. 2014;63:112–5. doi:10.1016/j.ypmed.2014.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thompson WW, Comanor L, Shay DK. Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease. J Infect Dis. 2006;194:S82–91. doi:10.1086/507558.CrossRefPubMedGoogle Scholar
  33. 33.
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457(7232):1012–4. doi:10.1038/nature07634.CrossRefPubMedGoogle Scholar
  34. 34.
    Irvin CB, Nouhan PP, Rice K. Syndromic analysis of computerized emergency department patients’ chief complaints: an opportunity for bioterrorism and influenza surveillance. Ann Emerg Med. 2003;41(4):447–52. doi:10.1067/mem.2003.104.CrossRefPubMedGoogle Scholar
  35. 35.
    Adimora AA, Ramirez C, Schoenbach VJ, Cohen MS. Policies and politics that promote HIV infection in the southern United States. AIDS. 2014;500:13–01357. doi:10.1097/QAD.0000000000000225.Google Scholar
  36. 36.
    Holmberg SD. The estimated prevalence and incidence of HIV in 96 large US metropolitan areas. Am J Public Health. 1996;86(5):642–54. doi:10.2105/ajph.86.5.642.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rao D, Yarowsky D, Shreevats A, Gupta M. Classifying latent user attributes in twitter. Proceedings of the 2nd international workshop on Search and mining user-generated contents—SMUC’10 [Internet]. ACM Press; 2010. doi:10.1145/1871985.1871993.
  38. 38.
    Adimora AA, Schoenbach VJ. Social context, sexual networks, and racial disparities in rates of sexually transmitted infections. J Infect Dis. 2005;191:S115–22. doi:10.1086/425280.CrossRefPubMedGoogle Scholar
  39. 39.
    Prejean J, Song R, Hernandez A, et al. Estimated HIV incidence in the United States, 2006-2009. PLoS One. 2011;6(8):e17502. doi:10.1371/journal.pone.0017502.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Song R, Hall HI, Harrison KM, Sharpe TT, Lin LS, Dean HD. Identifying the impact of social determinants of health on disease rates using correlation analysis of area-based summary information. Public Health Rep. 2011;126(Suppl 3):70–80.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shedlin MG, Deren S. Cultural factors influencing HIV risk behavior among dominicans in new york city. J Ethn Subst Abuse. 2002;1(1):71. doi:10.1300/j233v01n01_05.CrossRefGoogle Scholar
  42. 42.
    Levy V, Page-Shafer K, Evans J, et al. HIV-related risk behavior among Hispanic immigrant men in a population-based household survey in low-income neighborhoods of northern California. Sex Transm Dis. 2005;32(8):487–90. doi:10.1097/01.olq.0000161185.06387.94.CrossRefPubMedGoogle Scholar
  43. 43.
    Kandula NR, Kersey M, Lurie N. Assuring the health of immigrants: what the leading health indicators tell us. Ann Rev Publ Health. 2004;25:357–76. doi:10.1146/annurev.publhealth.25.101802.123107.CrossRefGoogle Scholar
  44. 44.
    Ceriani L, Verme P. The origins of the GINI index: extracts from variabilità e mutabilità (1912) by Corrado Gini. J Econ Inequal. 2011;10(3):421–43. doi:10.1007/s10888-011-9188-x.CrossRefGoogle Scholar
  45. 45.
    Gini C. Variabilità e mutabilità. Bologna: C. Cuppini; 1912.Google Scholar
  46. 46.
    Joy R, Druyts EF, Brandson EK, et al. Impact of neighborhood-level socioeconomic status on HIV disease progression in a universal health care setting. JAIDS. 2008;47(4):500–5. doi:10.1097/qai.0b013e3181648dfd.PubMedGoogle Scholar
  47. 47.
    McIntosh WA, Thomas JK. Economic and other societal determinants of the prevalence of HIV: a test of competing hypotheses. Soc Psychol Q. 2004;45(2):303–24. doi:10.1111/j.1533-8525.2004.tb00014.x.Google Scholar
  48. 48.
    McMahon J, Wanke C, Terrin N, Skinner S, Knox T. Poverty, hunger, education, and residential status impact survival in HIV. AIDS Behav. 2011;15:1503–11. doi:10.1007/s10461-010-9759-z.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Krueger LE, Wood RW, Diehr PH, Maxwell CL. Poverty and HIV seropositivity: the poor are more likely to be infected. AIDS. 1990;4(8):811–4. doi:10.1097/00002030-199008000-00015.CrossRefPubMedGoogle Scholar
  50. 50.
    Harrison KM, Ling Q, Song R, Hall HI. County-level socioeconomic status and survival after HIV diagnosis, United States. Ann Epidemiol. 2008;18(12):919–27. doi:10.1016/j.annepidem.2008.09.003.CrossRefGoogle Scholar
  51. 51.
    Morstatter F, Pfeffer J, Liu H, Carley KM. Is the sample good enough?. AAAI: Comparing data from Twitter’s streaming API with Twitter’s firehose; 2013.Google Scholar
  52. 52.
    Hecht B, Hong L, Suh B, Chi EH. Tweets from Justin Bieber’s heart: The dynamics of the location field in user profiles. SIGCHI. 2011. p. 237–46.Google Scholar
  53. 53.
    Schwartz HA, Eichstaedt JC, Kern ML et al. Characterizing geographic variation in well-being using Tweets. ICWSM. 2013. p. 583–91.Google Scholar
  54. 54.
    Pennebaker JW, Booth RE, Francis ME. Linguistic inquiry and word count: LIWC. LIWC.Net. [computer program]. 2007.Google Scholar
  55. 55.
    Pennebaker JW, Chung CK, Ireland M, Gonzales A, Booth RJ. The development and psychometric properties of LIWC2007 [Software manual]. LIWC.net. 2007. http://goo.gl/CPK5gt.
  56. 56.
    Davies M. The corpus of contemporary american english: 450 million words, 1990-present [Online linguistic corpus]. 2008. http://corpus.byu.edu/coca/.
  57. 57.
    The lme4 package: Linear mixed-effects models using s4 classes [computer program]. Version 0.999375-282009.Google Scholar
  58. 58.
    Pinheiro JC, Bates DM. Mixed effects models in s and s-plus. New York: Springer; 2000.CrossRefGoogle Scholar
  59. 59.
    Team RDC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011.Google Scholar
  60. 60.
    Bryk AS, Raudenbush SW. Hierarchical linear models: applications and data analysis methods. Newbury Park: Sage; 1992.Google Scholar
  61. 61.
    Wallerstein N, Duran B. Community-based participatory research contributions to intervention research: the intersection of science and practice to improve health equity. Am J Public Health. 2010;100(Suppl 1):S40–6. doi:10.2105/ajph.2009.184036.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chartrand TL, van Baaren R. Human mimicry. In: Zanna MP, editor. Exp Soc Psychol, vol. 41. San Diego: Elsevier Academic Press; 2009. p. 219–74. doi:10.1016/s0065-2601(08)00405-x.Google Scholar
  63. 63.
    Dik G, Aarts H. Behavioral cues to others’ motivation and goal pursuits: the perception of effort facilitates goal inference and contagion. J Exp Soc Psychol. 2007;43(5):727–37. doi:10.1016/j.jesp.2006.09.002.CrossRefGoogle Scholar
  64. 64.
    Ireland ME, Pennebaker JW. Language style matching in writing: synchrony in essays, correspondence, and poetry. J Pers Soc Psychol. 2010;99(3):549–71. doi:10.1037/a0020386.CrossRefPubMedGoogle Scholar
  65. 65.
    @IrisClasson. This sums up 90% of my work day. https://twitter.com/irisclasson/status/587710479444877312. Accessed 13 April 2015.
  66. 66.
    @RealMichaelKay. Work harder than anyone else and treat people the way you want to be treated. https://twitter.com/RealMichaelKay. Accessed 13 April 2015.
  67. 67.
    Tausczik YR, Pennebaker JW. The psychological meaning of words: LIWC and computerized text analysis methods. J Lang Soc Psychol. 2010;29(1):24–54. doi:10.1177/0261927x09351676.CrossRefGoogle Scholar
  68. 68.
    @madpoetry. “Siri, delete my spam.” “Move all pizza coupons to inbox.” https://twitter.com/madpoetry. Accessed 13 April 2015.
  69. 69.
    Radinsky K, Horvitz E. Mining the web to predict future events. ACM-WSDM. 2013. doi:10.1145/2433396.2433431.Google Scholar
  70. 70.
    Sadilek A, Kautz H, Silenzio V. Predicting disease transmission from geo-tagged micro-blog data. AAAI. 2012. p. 136–42.Google Scholar
  71. 71.
    Delcher PC, Edwards KT, Stover JA, Newman LM, Groseclose SL, Rajnik DM. Data suppression strategies used during surveillance data release by sexually transmitted disease prevention programs. J Public Health Man. 2008;14(2):E1–8. doi:10.1097/01.phh.0000311902.95948.f5.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Molly E. Ireland
    • 1
    • 3
  • Qijia Chen
    • 2
    • 3
  • H. Andrew Schwartz
    • 2
    • 3
    • 4
  • Lyle H. Ungar
    • 2
    • 3
  • Dolores Albarracin
    • 2
    • 3
  1. 1.Department of Psychological SciencesTexas Tech UniversityLubbockUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA
  3. 3.University of Illinois at Urbana-ChampaignChampaignUSA
  4. 4.Department of Computer SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations