Advertisement

AIDS and Behavior

, Volume 19, Issue 12, pp 2347–2357 | Cite as

HIV Prevalence Among People Who Inject Drugs in Greater Kuala Lumpur Recruited Using Respondent-Driven Sampling

  • Alexander R. Bazazi
  • Forrest Crawford
  • Alexei Zelenev
  • Robert Heimer
  • Adeeba Kamarulzaman
  • Frederick L. Altice
Original Paper

Abstract

The HIV epidemic in Malaysia is concentrated among people who inject drugs (PWID). Accurate estimates of HIV prevalence are critical for developing appropriate treatment and prevention interventions for PWID in Malaysia. In 2010, 461 PWID were recruited using respondent-driven sampling in Greater Kuala Lumpur, Malaysia. Participants completed rapid HIV testing and behavioral assessments. Estimates of HIV prevalence were computed for each of the three recruitment sites and the overall sample. HIV prevalence was 15.8 % (95 % CI 12.5–19.2 %) overall but varied widely by location: 37.0 % (28.6–45.4 %) in Kampung Baru, 10.3 % (5.0–15.6 %) in Kajang, and 6.3 % (3.0–9.5 %) in Shah Alam. Recruitment extended to locations far from initial interview sites but was concentrated around discrete geographic regions. We document the high prevalence of HIV among PWID in Greater Kuala Lumpur. Sustained support for community surveillance and HIV prevention interventions is needed to stem the HIV epidemic among PWID in Malaysia.

Keywords

HIV prevalence People who inject drugs Malaysia Surveillance Respondent-driven sampling 

Resumen

La epidemia del VIH en Malasia se concentra en consumidores de drogas inyectables (CDI). Las estimaciones precisas de la prevalencia del VIH son esenciales para desarrollar intervenciones eficaces para el tratamiento y prevención del VIH. En 2010, 461 CDI se reclutaron por un muestreo dirigido por entrevistadores en Kuala Lumpur, Malasia. Los participantes se sometieron a la prueba del VIH y a una encuesta conductual. Se estimó la prevalencia del VIH para cada uno de los tres lugares de reclutamiento y la para muestra total. La prevalencia total del VIH fue 15.8 % (95 % CI 12.5–19.2 %), pero se presentaron grandes diferencias entre los tres lugares: 37.0 % (28.6–45.4 %) en Kampung Baru, 10.3 % (5.0–15.6 %) en Kajang, y 6.3 % (3.0–9.5 %) en Shah Alam. El reclutamiento alcanzó lugares lejos de los sitios de entrevista originales pero se concentró alrededor de unos regiones. Documentamos una alta prevalencia del VIH entre los CDI en Kuala Lumpur. El apoyo sostenido para la vigilancia del VIH en la comunidad y las intervenciones de la prevención del VIH es necesario para detener la epidemia de VIH en Malasia.

Notes

Acknowledgments

This work was supported by NIH career development (FLA: NIDA K24 DA017072, AZ: NIDA K01 DA037826, FC: NCATS KL2 TR000140), research (NIDA FLA, AK: NIDA R01 DA032106, FC: NIMH/CIRA P30MH062294), and training (ARB: T32 GM07205, NIMH T32 MH020031, NIDA F30 DA039716) Grants as well as University Malaya’s High Impact Research Grant (AK: E-000001-20001) and the Yale Downs Fellowship (ARB). OraSure Technologies, Inc. provided discounted rapid HIV tests. Funders had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Supplementary material

10461_2015_1191_MOESM1_ESM.pdf (826 kb)
Supplementary material 1 (PDF 826 kb)

References

  1. 1.
    Malaysia Country Responses to HIV/AIDS. Reporting period: January 2013–December 2013: AIDS/STD Section, Diseases Control Division, Ministry of Health, Government of Malaysia. 2014.Google Scholar
  2. 2.
    Kamarulzaman A. Impact of HIV prevention programs on drug users in Malaysia. JAIDS J Acquir Immune Defic Syndr. 2009;52:S17–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Malaysian AIDS Council, Malaysian AIDS Foundation. 2013 Annual Report. 2014.Google Scholar
  4. 4.
    Fu JJ, Bazazi AR, Altice FL, Mohamed MN, Kamarulzaman A. Absence of antiretroviral therapy and other risk factors for morbidity and mortality in Malaysian compulsory drug detention and rehabilitation centers. PLoS One. 2012;7(9):e44249.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Degenhardt L, Mathers BM, Wirtz AL, et al. What has been achieved in HIV prevention, treatment and care for people who inject drugs, 2010–2012? A review of the six highest burden countries. Int J Drug Policy. 2014;25(1):53–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Ghani MA, Brown SE, Khan F, et al. An exploratory qualitative assessment of self-reported treatment outcomes and satisfaction among patients accessing an innovative voluntary drug treatment centre in Malaysia. Int J Drug Policy. 2015;26(2):175–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Jin H, Earnshaw VA, Wickersham JA, et al. An assessment of health-care students’ attitudes toward patients with or at high risk for HIV: implications for education and cultural competency. AIDS Care. 2014;26(10):1223–8.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Act 234: Dangerous drugs act 1952, revised. 2006.Google Scholar
  9. 9.
    Act 283: Drug dependents (Treatment and rehabilitations) act 1983, revised. 2006.Google Scholar
  10. 10.
    Heckathorn DD. Respondent-driven sampling: a new approach to the study of hidden populations. Soc Probl. 1997;44:174–99.CrossRefGoogle Scholar
  11. 11.
    Salganik MJ, Heckathorn DD. Sampling and estimation in hidden populations using respondent-driven sampling. Sociol Methodol. 2004;34(1):193–240.CrossRefGoogle Scholar
  12. 12.
    Gile KJ, Handcock MS. Respondent-driven sampling: an assessment of current methodology. Sociol Methodol. 2010;40(1):285–327.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Malekinejad M, Johnston LG, Kendall C, Kerr LRFS, Rifkin MR, Rutherford GW. Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav. 2008;12(1):105–30.CrossRefGoogle Scholar
  14. 14.
    Centers for Disease Control and Prevention. HIV infection and HIV-associated behaviors among injecting drug users-20 cities, United States, 2009. MMWR. 2012;61(8):133.Google Scholar
  15. 15.
    World Health Organization. Introduction to HIV, AIDS and sexually transmitted infection surveillance. UNAIDS: World Health Organization; 2010.Google Scholar
  16. 16.
    Heckathorn DD. Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Soc Probl. 2002;49(1):11–34.CrossRefGoogle Scholar
  17. 17.
    Volz E, Heckathorn DD. Probability based estimation theory for respondent driven sampling. J Off Stat. 2008;24(1):79–97.Google Scholar
  18. 18.
    Gile KJ, Handcock MS. Network model-assisted inference from respondent-driven sampling data. arXiv preprint arXiv:1108.0298. 2011.Google Scholar
  19. 19.
    Heimer R. Critical issues and further questions about respondent-driven sampling: comment on Ramirez-Valles, et al. (2005). AIDS Behav. 2005;9(4):403–8.CrossRefPubMedGoogle Scholar
  20. 20.
    White RG, Lansky A, Goel S, et al. Respondent driven sampling: where we are and where should we be going? Sex Transm Infect. 2012;88(6):397–9.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Goel S, Salganik MJ. Assessing respondent-driven sampling. Proc Natl Acad Sci USA. 2010;107(15):6743–7.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Salganik MJ. Commentary: respondent-driven sampling in the real world. Epidemiology. 2012;23(1):148–50.CrossRefPubMedGoogle Scholar
  23. 23.
    McCreesh N, Frost S, Seeley J, et al. Evaluation of respondent-driven sampling. Epidemiology. 2012;23(1):138–47.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Crawford FW. The graphical structure of respondent-driven sampling. arXiv:1406.0721. 2014.Google Scholar
  25. 25.
    Gile KJ, Johnston LG, Salganik MJ. Diagnostics for respondent-driven sampling. J R Stat Soc. 2015;178(1):241–69.CrossRefGoogle Scholar
  26. 26.
    Salganik MJ. Variance estimation, design effects, and sample size calculations for respondent-driven sampling. J Urban Health. 2006;83(1):98–112.PubMedCentralCrossRefGoogle Scholar
  27. 27.
    McCarty C, Killworth PD, Bernard RH, Johnsen EC, Shelley GA. Comparing two methods for estimating network size. Hum Organ. 2001;60(1):28–39.CrossRefGoogle Scholar
  28. 28.
    Sheehan DV, Lecrubier Y, Sheehan KH, et al. The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(20):22–33;quiz 34–57.PubMedGoogle Scholar
  29. 29.
    Kahle D, Wickam H. ggmap: spatial visualization with ggplot2. R package Version 2.3. R J. 2013;5(1):144–61. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
  30. 30.
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ (2015).
  31. 31.
    Gile KJ. Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J Am Stat Assoc. 2011;106(493):135–46.CrossRefGoogle Scholar
  32. 32.
    Handcock MS, Fellows IE, Gile KJ. RDS: respondent-driven sampling. R package version 0.7-2. http://CRAN.R-project.org/package=RDS (2015).
  33. 33.
    Wejnert C. An empirical test of respondent-driven sampling: point estimates, variance, degree measures, and out-of-equilibrium data. Sociol Methodol. 2009;39(1):73–116.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Gabor C, Nepusz T. The igraph software package for complex network research. Int J Complex Syst. 2006.Google Scholar
  35. 35.
    Bazazi AR, Zelenev A, Fu JJ, Yee I, Kamarulzaman A, Altice FL. High prevalence of non-fatal overdose among people who inject drugs in Malaysia: correlates of overdose and implications for overdose prevention from a cross-sectional study. Int J Drug Policy. 2014.Google Scholar
  36. 36.
    Vijay A, Bazazi AR, Yee I, Kamarulzaman A, Altice FL. Treatment readiness, attitudes toward, and experiences with methadone and buprenorphine maintenance therapy among people who inject drugs in Malaysia. J Subst Abus Treat. 2015;54:29–36.CrossRefGoogle Scholar
  37. 37.
    Mathers BM, Degenhardt L, Phillips B, et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet. 2008;372(9651):1733–45.CrossRefPubMedGoogle Scholar
  38. 38.
    Singh S, Crofts N. HIV infection among injecting drug users in north-east Malaysia, 1992. AIDS Care. 1993;5(3):273–81.CrossRefPubMedGoogle Scholar
  39. 39.
    Vicknasingam B, Narayanan S, Navaratnam V. The relative risk of HIV among IDUs not in treatment in Malaysia. AIDS Care. 2009;21(8):984–91.CrossRefPubMedGoogle Scholar
  40. 40.
    De P, Cox J, Boivin JF, Platt RW, Jolly AM. The importance of social networks in their association to drug equipment sharing among injection drug users: a review. Addiction. 2007;102(11):1730–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Costenbader EC, Astone NM, Latkin CA. The dynamics of injection drug users’ personal networks and HIV risk behaviors. Addiction. 2006;101(7):1003–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Hoffmann JP, Su SS, Pach A. Changes in network characteristics and HIV risk behavior among injection drug users. Drug Alcohol Depend. 1997;46(1–2):41–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Rudolph AE, Fuller CM, Latkin C. The importance of measuring and accounting for potential biases in respondent-driven samples. AIDS Behav. 2013;17(6):2244–52.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Vickerman P, Platt L, Jolley E, Rhodes T, Kazatchkine MD, Latypov A. Controlling HIV among people who inject drugs in Eastern Europe and Central Asia: insights from modelling. Int J Drug Policy. 2014;25(6):1163–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Toledo L, Codeco CT, Bertoni N, et al. Putting respondent-driven sampling on the map: insights from Rio de Janeiro, Brazil. J Acquir Immune Defic Syndr. 2011;57(3):S136–43.CrossRefPubMedGoogle Scholar
  46. 46.
    McCreesh N, Johnston LG, Copas A, et al. Evaluation of the role of location and distance in recruitment in respondent-driven sampling. Int J Health Geogr. 2011;10(1):56.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Young AM, Rudolph AE, Quillen D, Havens JR. Spatial, temporal and relational patterns in respondent-driven sampling: evidence from a social network study of rural drug users. J Epidemiol Community Health. 2014;68(8):792–8.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Qiu P, Yang Y, Ma X, et al. Respondent-driven sampling to recruit in-country migrant workers in China: a methodological assessment. Scand J Public Health. 2012;40(1):92–101.CrossRefPubMedGoogle Scholar
  49. 49.
    Springer SA, Larney S, Mehrjerdi ZA, Metzger D, Altice FL, Shoptaw S. Drug treatment as HIV prevention among women and girls who use drugs from a global perspective: progress, gaps and future directions. J Acquir Immune Defic Syndr. 2015 (In press).Google Scholar
  50. 50.
    Ministry of Health Malaysia, UNICEF: Women and girls: confronting HIV and AIDS in Malaysia. http://www.unicef.org/malaysia/Women_and_AIDSReport2008%281%29.pdf (2008).
  51. 51.
    Wickersham JA, Loeliger K, Marcus R, Pillai V, Kamarulzaman A, Altice FL. Correlates of lifetime and active injection drug use among women in Malaysia. Am J Drug Alcohol Abus. 2015 (In press).Google Scholar
  52. 52.
    Department of Statistics Malaysia. 2010 Population and housing census of Malaysia: population distribution and basic demographic characteristics. 2011.Google Scholar
  53. 53.
    Bachireddy C, Bazazi AR, Kavasery R, Govindasamy S, Kamarulzaman A, Altice FL. Attitudes toward opioid substitution therapy and pre-incarceration HIV transmission behaviors among HIV-infected prisoners in Malaysia: implications for secondary prevention. Drug Alcohol Depend. 2011;116(1–3):151–7.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenUSA
  2. 2.Centre of Excellence for Research in AIDS (CERiA), Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of BiostatisticsYale School of Public HealthNew HavenUSA
  4. 4.Department of Internal Medicine, Section of Infectious Diseases, AIDS ProgramYale School of MedicineNew HavenUSA
  5. 5.Infectious Diseases Unit, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations