Young Men’s Social Network Characteristics and Associations with Sexual Partnership Concurrency in Tanzania

Abstract

Social network influence on young people’s sexual behavior is understudied in sub-Saharan Africa. Previous research identified networks of mostly young men in Dar es Salaam who socialize in “camps”. This study describes network characteristics within camps and their relationship to young men’s concurrent sexual partnerships. We conducted surveys with a nearly complete census of ten camp networks (490 men and 160 women). Surveys included name generators to identify camp-based networks. Fifty seven percent of sexually active men (n = 471) reported past year concurrency, measured using the UNAIDS method. In a multivariable model, men’s individual concurrency was associated with being a member of a closer knit camp in which concurrency was the normative behavior. Younger men who had older members in their networks were more likely to engage in concurrency. Respondent concurrency was also associated with inequitable personal gender norms. Our findings suggest strategies for leveraging social networks for HIV prevention among young men.

Resumen

Influencia de las redes sociales en el comportamiento sexual de los jóvenes está poco estudiado en el África subsahariana. Investigaciones previas identificaron redes de hombres en Dar es Salaam, Tanzania que socializan en “campos”. Este estudio describe las características de las redes sociales de hombres jóvenes dentro de los campos y sus relaciónes con el comportamiento sexual de tener dos o más relaciones sexuales simultáneas. Hemos hecho encuestas con casi un censo completo de 10 redes de campos (490 hombres y 160 mujeres). Las encuestas incluyen generadores de nombre para identificar las redes en los campos. 57 % de los hombres que hicieron sexo (n = 471) tuvieron parejas simultáneas en el año pasado, medida por el método de UNAIDS. En el análisis multi-variado, tener parejas simultáneas se asoció con ser miembro de un campo en que tener parejas simultáneas fue el comportamiento normativo de los hombres. Los hombres más jóvenes que tenían miembros de más edad en sus redes tenían mayor probabilidad de estar en parejas simultáneas. Tener parejas simultáneas también se asoció con hombres que tenían normas de género desiguales. Nuestros resultados sugieren estrategias para aprovechar las redes sociales para la prevención del VIH entre los hombres jóvenes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    UNAIDS. UNAIDS report on the global AIDS epidemic 2013. Geneva; 2013.

  2. 2.

    Jewkes RK, Dunkle K, Nduna M, Shai N. Intimate partner violence, relationship power inequity, and incidence of HIV infection in young women in South Africa: a cohort study. Lancet. 2010;376(9734):41–8.

    Article  PubMed  Google Scholar 

  3. 3.

    Mills EJ, Bakanda C, Birungi J, Chan K, Hogg RS, Ford N, et al. Male gender predicts mortality in a large cohort of patients receiving antiretroviral therapy in Uganda. J Int AIDS Soc. 2011;14(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mills EJ, Beyrer C, Birungi J, Dybul MR. Engaging men in prevention and care for HIV/AIDS in Africa. PLoS Med. 2012;9(2):e1001167.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Montgomery M, Casterline J. Social learning, social influence, and new models of fertility. Popul Dev Rev. 1996;22:151–75.

    Article  Google Scholar 

  6. 6.

    Ali MM, Dwyer DS. Estimating peer effects in sexual behavior among adolescents. J Adolesc. 2011;34(1):183–90.

    Article  PubMed  Google Scholar 

  7. 7.

    Ajilore O. Identifying peer effects using spatial analysis: the role of peers on risky sexual behavior. Rev Econ Househ. 2013;online.

  8. 8.

    Romer D, Black M, Ricardo I, Feigelman S, Kaljee L, Galbraith J, et al. Social influences on the sexual behavior of youth at risk for HIV exposure. Am J Public Health. 1994;84(6):977–85.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11(5):641–8.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Moody J. The importance of relationship timing for diffusion. Soc Forces. 2002;81(1):25–56.

    Article  Google Scholar 

  11. 11.

    Morris M. Barking up the wrong evidence tree. Comment on Lurie & Rosenthal, “concurrent partnerships as a driver of the HIV epidemic in sub-Saharan Africa? The evidence is limited”. AIDS Behav. 2010;14(1):31–3 discussion 34–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pilcher CD, Tien HC, Eron JJ, Vernazza PL, Leu S, Stewart PW, et al. Brief but efficient : acute HIV infection and the sexual transmission of HIV. J Infect Dis. 2004;189:1785–92.

    Article  PubMed  Google Scholar 

  13. 13.

    Lurie MN, Rosenthal S. Concurrent partnerships as a driver of the HIV epidemic in sub-Saharan Africa? The evidence is limited. AIDS Behav. 2010;14(1):17–24.

    Article  PubMed  Google Scholar 

  14. 14.

    Sawers L, Stillwaggon E. Concurrent sexual partnerships do not explain the HIV epidemics in Africa: a systematic review of the evidence. J Int AIDS Soc. 2010;13:34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Padian NS, Manian S. The concurrency debate: time to put it to rest. Lancet. 2011;378(9787):203–4.

    Article  PubMed  Google Scholar 

  16. 16.

    Kretzschmar M, White RG, Caraël M. Concurrency is more complex than it seems. AIDS. 2010;24(2):313–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Eaton J, Case K, Secretariat of the UNAIDS Reference Group on Estimates, Modelling, and Projections. Consultation on concurrent sexual partnerships: recommendations from a meeting of the UNAIDS reference group on estimates, modelling, and projections held in Nairobi, Kenya, April 20–21st. Nairobi, Kenya; 2009.

  18. 18.

    Latkin C, Davey-Rothwell M, Knowlton AR, Alexander KA, Williams CT, Boodram B. Social network approaches to recruitment, HIV prevention, medical care, and medication adherence. J Acquir Immune Defic Syndr. 2013;63(Suppl 1):S54–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dolwick Grieb SM, Davey-Rothwell M, Latkin C. Social and sexual network characteristics and concurrent sexual partnerships among urban African American high-risk women with main sex partners. AIDS Behav. 2012;16(4):882–9.

    Article  PubMed Central  Google Scholar 

  20. 20.

    King KM, Latkin CA, Davey-Rothwell MA. Love on lockdown: how social network characteristics predict separational concurrency among low income African-American women. J Urban Health. 2015;92(3):460–71.

    Article  PubMed  Google Scholar 

  21. 21.

    Wasserman S, Faust K. Social network analysis: methods and applications. New York: Cambridge University Press; 1994.

    Google Scholar 

  22. 22.

    Perkins JM, Subramanian SV, Christakis N. Social networks and health: a systematic review of sociocentric network studies in low- and middle-income countries. Soc Sci Med. 2015;125:60–78.

    Article  PubMed  Google Scholar 

  23. 23.

    Yamanis TJ, Maman S, Mbwambo JK, Earp JAE, Kajula LJ. Social venues that protect against and promote HIV risk for young men in Dar es Salaam, Tanzania. Soc Sci Med. 2010;71(9):1601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yamanis TJ, Doherty I, Weir SS, Bowling JM, Kajula LJ, Mbwambo JK, et al. From coitus to concurrency: sexual partnership characteristics and risk behaviors of 15-19 year old men recruited from urban venues in Tanzania. AIDS Behav. 2013;17(7):2405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Carter MW, Kraft JM, Koppenhaver T, Galavotti C, Roels TH, Kilmarx PH, et al. “A bull cannot be contained in a single kraal”: concurrent sexual partnerships in Botswana. AIDS Behav. 2007;11(6):822–30.

    Article  PubMed  Google Scholar 

  26. 26.

    Mattson C, Bailey R. A nested case-control study of sexual practices and risk factors for prevalent HIV-1 infection among young men in Kisumu, Kenya. Sex Transm. 2007;34(10):731–6.

    Google Scholar 

  27. 27.

    Steffenson AE, Pettifor AE, Seage GR, Rees HV, Cleary PD. Concurrent sexual partnerships and human immunodeficiency virus risk among South African youth. Sex Transm Dis. 2011;38(6):459–66.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mah TL. Prevalence and correlates of concurrent sexual partnerships among young people in South Africa. Sex Transm Dis. 2010;37(2):105–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Clark S. Extra-marital sexual partnerships and male friendships in rural Malawi. Demogr Res. 2010;22:1–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Helleringer S, Kohler HP. Social networks, perceptions of risk, and changing attitudes towards HIV/AIDS: new evidence from a longitudinal study using fixed-effects analysis. Popul Stud. 2005;59:265–82.

    Article  Google Scholar 

  31. 31.

    Barrington C, Latkin C, Sweat MD, Moreno L, Ellen J, Kerrigan D. Talking the talk, walking the walk: social network norms, communication patterns, and condom use among the male partners of female sex workers in La Romana, Dominican Republic. Soc Sci Med. 2009;68(11):2037–44.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kohler HP, Behrman J, Watkins SC. Social networks and HIV/AIDS risk perceptions. Demography. 2007;44:1–33.

    Article  PubMed  Google Scholar 

  33. 33.

    Gyarmathy VA, Caplinskiene I, Caplinskas S, Latkin C. Social network structure and HIV infection among injecting drug users in Lithuania: gatekeepers as bridges of infection. AIDS Behav. 2014;18(3):505–10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Alexander C, Piazza M, Mekos D, Valente T. Peers, schools, and adolescent cigarette smoking. J Adolesc Health. 2001;29:22–30.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Steinberg L, Monahan C. Age differences in resistance to peer influence. Dev Psychol. 2007;43(6):1531–43.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wisnieski D, Sieving RE, Garwick AW. Influence of peers on young adolescent females’ romantic decisions. Am J Health Educ. 2013;44(1):32–40.

    Article  Google Scholar 

  37. 37.

    Dunkle KL, Jewkes R, Nduna M, Jama N, Levin J, Sikweyiya Y, et al. Transactional sex with casual and main partners among young South African men in the rural Eastern Cape: prevalence, predictors, and associations with gender-based violence. Soc Sci Med. 2007;65(6):1235–48.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tanzania Research on Poverty Alleviation. Tanzania poverty and human development report. 2005.

  39. 39.

    Tanzania National Bureau of Statistics. 2002 population and housing census. Dar es Salaam, Tanzania. Dar es Salaam: National Bureau of Statistics; 2002.

    Google Scholar 

  40. 40.

    UNICEF. Adolescence in Tanzania. 2011.

  41. 41.

    McCurdy S, Ross M, Kilonzo G, Leshabari M, Williams M. HIV/AIDS and injection drug use in the neighborhoods of Dar es Salaam, Tanzania. Drug Alcohol Depend. 2006;82(Suppl 1):S23–7.

    Article  PubMed  Google Scholar 

  42. 42.

    Dar es Salaam City Council. City profile for Dar es Salaam, United Republic of Tanzania. 2004.

  43. 43.

    Weir SS, Morroni C, Coetzee N, Spencer J, Boerma JT. A pilot study of a rapid assessment method to identify places for AIDS prevention in Cape Town, South Africa. Sex Transm Infect. 2002;78(Suppl 1):i106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pulerwitz J, Barker G. Measuring attitudes toward gender norms among young men in Brazil: development and psychometric evaluation of the GEM scale. Men Masculinities. 2007;10(3):322–38.

    Article  Google Scholar 

  45. 45.

    Scott J. Social network analysis: a handbook. 2nd ed. London: Sage Publications Ltd; 2000.

    Google Scholar 

  46. 46.

    Ali MM, Dwyer DS. Estimating peer effects in adolescent smoking behavior: a longitudinal analysis. J Adolesc Health. 2009;45(4):402–8.

    Article  PubMed  Google Scholar 

  47. 47.

    Fujimoto K, Valente T. Social network influences on adolescent substance use: disentangling structural equivalence from cohesion. Soc Sci Med. 2012;74(12):1952–60.

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Gardiner JC, Luo Z, Roman LA. Fixed effects, random effects and GEE: what are the differences? Stat Med. 2009;28:229–39.

    Article  Google Scholar 

  49. 49.

    Latkin C, Donnell D. Relationships between social norms, social network characteristics, and HIV risk behaviors in Thailand and the United States. Health Psychol. 2009;28(3):323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Latkin C, Kuramoto S. Social norms, social networks, and HIV risk behavior among injection drug users. AIDS Behav. 2010;14(5):1159–68.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Dawson JF. Moderation in management research: what, why, when, and how. J Bus Psychol. 2013;29(1):1–19.

    Article  Google Scholar 

  52. 52.

    Freeman LC. Centrality in social networks conceptual clarification. Soc Netw. 1978;1(3):215–39.

    Article  Google Scholar 

  53. 53.

    Cialdini R, Reno R, Kallgren C. A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places. J Pers Soc Psychol. 1990;58:1015–26.

    Article  Google Scholar 

  54. 54.

    Rweyemamu D, Fuglesang M. Multiple and concurrent sexual partnerships among youth in Tanzania. Dar es Salaam, Tanzania; 2008.

  55. 55.

    Valente TW, Pumpuang P. Identifying opinion leaders to promote behavior change. Health Educ Behav. 2007;34(6):881–96.

    Article  PubMed  Google Scholar 

  56. 56.

    Barker G, Ricardo C. Young men and the construction of masculinity in sub-Saharan Africa: implications for HIV/AIDS, conflict, and violence. The World Bank. 2005; Paper 26.

  57. 57.

    Pettifor AE, Levandowski BA, MacPhail C, Padian NS, Cohen MS, Rees HV. Keep them in school: the importance of education as a protective factor against HIV infection among young South African women. Int J Epidemiol. 2008;37(6):1266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Maman S, Kilonzo MN, Yamanis T, Balvanz P, Lambert G, Mulawa M, et al. A cluster-randomized trial to evaluate the efficacy of a combined microfinance and peer leadership training intervention for HIV prevention with networks of young men in Dar es Salaam, Tanzania. AIDS 2014. Melbourne, Australia: International AIDS Society; 2014. http://pag.aids2014.org/abstracts.aspx?aid=4440. Accessed 10 Aug 2015.

  59. 59.

    McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: homophily in social networks. Annu Rev Sociol. 2001;27:415–44.

    Article  Google Scholar 

  60. 60.

    Nnko S, Boerma JT, Urassa M, Mwaluko G, Zaba B. Secretive females or swaggering males? An assessment of the quality of sexual partnership reporting in rural Tanzania. Soc Sci Med. 2004;59(2):299–310.

    Article  PubMed  Google Scholar 

  61. 61.

    Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol. 2004;160:301–5.

    Article  PubMed  Google Scholar 

  62. 62.

    Deddens J, Petersen MR. Approaches for estimating prevalence ratios. Occup Environ Med. 2008;65(7):501–6.

    Article  Google Scholar 

  63. 63.

    Eng E, Parker E, Harlan C. Lay health advisor intervention strategies: a continuum from natural helping to paraprofessional helping. Health Educ Behav. 1997;24:413–7.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Michielsen K, Chersich MF, Luchters S, De Koker P, Van Rossem R, Temmerman M. Effectiveness of HIV prevention for youth in sub-Saharan Africa: systematic review and meta-analysis of randomized and nonrandomized trials. AIDS. 2010;24(8):1193–202.

    Article  PubMed  Google Scholar 

  65. 65.

    Wight D, Plummer M, Ross D. The need to promote behaviour change at the cultural level: one factor explaining the limited impact of the MEMA kwa Vijana adolescent sexual health intervention in rural Tanzania. A process evaluation. BMC Public Health. 2012;12:788.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Plummer ML, Wight D, Obasi AIN, Changalucha J, Hayes RJ, Ross DA. AIDS education programmes hit some targets: improving youth HIV prevention by sharing resources and better addressing community norms and concurrency. AIDS. 2011;25(8):1135–41.

    Article  Google Scholar 

  67. 67.

    Aarø LE, Mathews C, Kaaya S, Katahoire AR, Onya H, Abraham C, et al. Promoting sexual and reproductive health among adolescents in southern and eastern Africa (PREPARE): project design and conceptual framework. BMC Public Health. 2014;14:54.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by a 2010–2011 developmental grant from the Duke University Center for AIDS Research (CFAR), an NIH funded program (5P30 AI064518). The first author’s participation in the project was supported by a post-doctoral fellowship from Duke University’s Global Health Institute and a grant from the National Institute of Mental Health (R01098690).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thespina J. Yamanis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamanis, T.J., Fisher, J.C., Moody, J.W. et al. Young Men’s Social Network Characteristics and Associations with Sexual Partnership Concurrency in Tanzania. AIDS Behav 20, 1244–1255 (2016). https://doi.org/10.1007/s10461-015-1152-5

Download citation

Keywords

  • Networks
  • Concurrency
  • Youth
  • Men
  • Tanzania