AIDS and Behavior

, Volume 19, Issue 6, pp 1089–1097 | Cite as

Heroin Use and HIV Disease Progression: Results from a Pilot Study of a Russian Cohort

  • E. Jennifer EdelmanEmail author
  • Debbie M. Cheng
  • Evgeny M. Krupitsky
  • Carly Bridden
  • Emily Quinn
  • Alexander Y. Walley
  • Dmitry A. Lioznov
  • Elena Blokhina
  • Edwin Zvartau
  • Jeffrey H. Samet
Original Paper


Opioids have immunosuppressive properties, yet their impact on HIV disease progression remains unclear. Using longitudinal data from HIV-infected antiretroviral therapy-naïve Russian individuals (n = 77), we conducted a pilot study to estimate the effect of heroin use on HIV disease progression. Heroin use was categorized based on past 30 days self-reported use at baseline, 6 and 12 months as none, intermittent or persistent. We estimated the effect of heroin use on HIV disease progression, measured as change in CD4 count from baseline to 12 months, using multivariable linear regression. Those with intermittent (n = 21) and no heroin use (n = 39) experienced mean decreases in CD4 count from baseline to 12 months (−103 and −10 cells/mm3, respectively; adjusted mean difference (AMD) −93; 95 % CI −245, 58). Those with persistent use (n = 17) showed a mean increase of 53 cells/mm3 (AMD 63; 95 % CI −95, 220). Future studies exploring the effects of heroin withdrawal on HIV disease progression are warranted.


Heroin HIV disease progression HIV CD4 


Los opioides tienen propiedades inmunosupresoras, pero su impacto sobre la progresión de la enfermedad VIH sigue siendo poco clara. Utilizando datos longitudinales de infectados por el VIH terapia antirretroviral personas rusas (n = 77), se realizó un estudio piloto para estimar el efecto del uso de la heroína sobre la progresión de la enfermedad VIH. Uso de la heroína se clasificó en últimos 30 días auto-informe en el momento de referencia, 6 meses y 12 meses como ninguno, intermitente o persistente. Se estimó el efecto del uso de la heroína sobre la progresión de la enfermedad VIH, medido como cambio de recuento de CD4 en la línea de base para 12 meses, mediante regresión lineal multivariante. Aquellos con intermitente (n = 21) y no uso de la heroína (n = 39) experimentaron disminuciones promedio del número CD4 desde el nivel basal de 12 meses (−103 células/mm3 y 10 células/mm3, respectivamente; diferencia de medias ajustadas (AMD) −93; IC 95 % −245, 58). Las personas con uso persistente (n = 17) mostraron un aumento medio de 53 células/mm3 (AMD 63; IC 95 % −95, 220). Futuros estudios que exploren los efectos de la heroína retirada sobre la progresión de la enfermedad VIH están garantizados.



The project was supported by the National Institute of Drug Abuse (R21 DA025435; R25-DA13582; and K12DA033312-01A1) and the National Institute on Alcohol Abuse and Alcoholism (K24 AA015674; R01 AA016059; U24AA020778; and U24AA020779).

Conflict of interest

The authors have no known conflicts of interest.


  1. 1.
    Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. Lancet. 2008;372(9651):1733–45. doi: 10.1016/S0140-6736(08)61311-2.PubMedCrossRefGoogle Scholar
  2. 2.
    McGowan CC, Weinstein DD, Samenow CP, Stinnette SE, Barkanic G, Rebeiro PF, et al. Drug use and receipt of highly active antiretroviral therapy among HIV-infected persons in two U.S. clinic cohorts. PLoS One. 2011;6(4):e18462. doi: 10.1371/journal.pone.0018462.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cofrancesco J Jr, Scherzer R, Tien PC, Gibert CL, Southwell H, Sidney S, et al. Illicit drug use and HIV treatment outcomes in a US cohort. AIDS. 2008;22(3):357–65. doi: 10.1097/QAD.0b013e3282f3cc21.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kerr T, Marshall BD, Milloy MJ, Zhang R, Guillemi S, Montaner JS, et al. Patterns of heroin and cocaine injection and plasma HIV-1 RNA suppression among a long-term cohort of injection drug users. Drug Alcohol Depend. 2012;124(1–2):108–12. doi: 10.1016/j.drugalcdep.2011.12.019.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Samet JH, Walley AY, Bridden C. Illicit drugs, alcohol, and addiction in human immunodeficiency virus. Panminerva Med. 2007;49(2):67–77.PubMedGoogle Scholar
  6. 6.
    McCarthy L, Wetzel M, Sliker JK, Eisenstein TK, Rogers TJ. Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 2001;62(2):111–23.PubMedCrossRefGoogle Scholar
  7. 7.
    Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, et al. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol. 2011;6(4):442–65. doi: 10.1007/s11481-011-9292-5.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Kipp AM, Desruisseau AJ, Qian HZ. Non-injection drug use and HIV disease progression in the era of combination antiretroviral therapy. J Subst Abuse Treat. 2011;40(4):386–96. doi: 10.1016/j.jsat.2011.01.001.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Cabral GA. Drugs of abuse, immune modulation, and AIDS. J Neuroimmune Pharmacol. 2006;1(3):280–95. doi: 10.1007/s11481-006-9023-5.PubMedCrossRefGoogle Scholar
  10. 10.
    Kapadia F, Vlahov D, Donahoe RM, Friedland G. The role of substance abuse in HIV disease progression: reconciling differences from laboratory and epidemiologic investigations. Clin Infect Dis. 2005;41(7):1027–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Peterson PK, Sharp BM, Gekker G, Portoghese PS, Sannerud K, Balfour HH Jr. Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS. 1990;4(9):869–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Moorman J, Zhang Y, Liu B, LeSage G, Chen Y, Stuart C, et al. HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim Biophys Acta. 2009;1793(8):1366–71.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Li Y, Merrill JD, Mooney K, Song L, Wang X, Guo CJ, et al. Morphine enhances HIV infection of neonatal macrophages. Pediatr Res. 2003;54(2):282–8. doi: 10.1203/01.PDR.0000074973.83826.4C.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Donahoe RM, Vlahov D. Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol. 1998;83(1–2):77–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Sacerdote P, Franchi S, Panerai AE. Non-analgesic effects of opioids: mechanisms and potential clinical relevance of opioid-induced immunodepression. Curr Pharm Des. 2012;18(37):6034–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Donahoe RM. Multiple ways that drug abuse might influence AIDS progression: clues from a monkey model. J Neuroimmunol. 2004;147(1–2):28–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar R, Torres C, Yamamura Y, Rodriguez I, Martinez M, Staprans S, et al. Modulation by morphine of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human immunodeficiency virus. J Virol. 2004;78(20):11425–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Donahoe RM, O’Neil SP, Marsteller FA, Novembre FJ, Anderson DC, Lankford-Turner P, et al. Probable deceleration of progression of Simian AIDS affected by opiate dependency: studies with a rhesus macaque/SIVsmm9 model. J Acquir Immune Defic Syndr. 2009;50(3):241–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Chuang RY, Suzuki S, Chuang TK, Miyagi T, Chuang LF, Doi RH. Opioids and the progression of simian AIDS. Front Biosci. 2005;10:1666–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Lucas GM, Griswold M, Gebo KA, Keruly J, Chaisson RE, Moore RD. Illicit drug use and HIV-1 disease progression: a longitudinal study in the era of highly active antiretroviral therapy. Am J Epidemiol. 2006;163(5):412–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Lucas GM, Cheever LW, Chaisson RE, Moore RD. Detrimental effects of continued illicit drug use on the treatment of HIV-1 infection. J Acquir Immune Defic Syndr. 2001;27(3):251–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Poundstone KE, Chaisson RE, Moore RD. Differences in HIV disease progression by injection drug use and by sex in the era of highly active antiretroviral therapy. AIDS. 2001;15(9):1115–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Perez-Hoyos S, del Amo J, Muga R, del Romero J, de Garcia Olalla P, Guerrero R, et al. Effectiveness of highly active antiretroviral therapy in Spanish cohorts of HIV seroconverters: differences by transmission category. AIDS. 2003;17(3):353–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Moore RD, Keruly JC, Chaisson RE. Differences in HIV disease progression by injecting drug use in HIV-infected persons in care. J Acquir Immune Defic Syndr. 2004;35(1):46–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Egger M, May M, Chene G, Phillips AN, Ledergerber B, Dabis F, et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet. 2002;360(9327):119–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Thorpe LE, Frederick M, Pitt J, Cheng I, Watts DH, Buschur S, et al. Effect of hard-drug use on CD4 cell percentage, HIV RNA level, and progression to AIDS-defining class C events among HIV-infected women. J Acquir Immune Defic Syndr. 2004;37(3):1423–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Mocroft A, Madge S, Johnson AM, Lazzarin A, Clumeck N, Goebel FD, et al. A comparison of exposure groups in the EuroSIDA study: starting highly active antiretroviral therapy (HAART), response to HAART, and survival. J Acquir Immune Defic Syndr. 1999;22(4):369–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Junghans C, Low N, Chan P, Witschi A, Vernazza P, Egger M. Uniform risk of clinical progression despite differences in utilization of highly active antiretroviral therapy: Swiss HIV Cohort Study. AIDS. 1999;13(18):2547–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Kapadia F, Cook JA, Cohen MH, Sohler N, Kovacs A, Greenblatt RM, et al. The relationship between non-injection drug use behaviors on progression to AIDS and death in a cohort of HIV seropositive women in the era of highly active antiretroviral therapy use. Addiction. 2005;100(7):990–1002. doi: 10.1111/j.1360-0443.2005.01098.x.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Baum MK, Rafie C, Lai S, Sales S, Page B, Campa A. Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J Acquir Immune Defic Syndr. 2009;50(1):93–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Cook JA, Burke-Miller JK, Cohen MH, Cook RL, Vlahov D, Wilson TE, et al. Crack cocaine, disease progression, and mortality in a multicenter cohort of HIV-1 positive women. AIDS. 2008;22(11):1355–63.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Palepu A, Tyndall M, Yip B, O’Shaughnessy MV, Hogg RS, Montaner JS. Impaired virologic response to highly active antiretroviral therapy associated with ongoing injection drug use. J Acquir Immune Defic Syndr. 2003;32(5):522–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Krupitsky EM, Zvartau EE, Lioznov DA, Tsoy MV, Egorova VY, Belyaeva TV, et al. Co-morbidity of infectious and addictive diseases in St. Petersburg and the Leningrad Region, Russia. Eur Addict Res. 2006;12(1):12–9. doi: 10.1159/000088578.PubMedCrossRefGoogle Scholar
  34. 34.
    Krupitsky E, Zvartau E, Karandashova G, Horton NJ, Schoolwerth KR, Bryant K, et al. The onset of HIV infection in the Leningrad region of Russia: a focus on drug and alcohol dependence. HIV Med. 2004;5(1):30–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Long EF, Brandeau ML, Galvin CM, Vinichenko T, Tole SP, Schwartz A, et al. Effectiveness and cost-effectiveness of strategies to expand antiretroviral therapy in St. Petersburg, Russia. AIDS. 2006;20(17):2207–15. doi: 10.1097/QAD.0b013e328010c7d0.PubMedCrossRefGoogle Scholar
  36. 36.
    Cherny NI, Baselga J, de Conno F, Radbruch L. Formulary availability and regulatory barriers to accessibility of opioids for cancer pain in Europe: a report from the ESMO/EAPC Opioid Policy Initiative. Ann Oncol. 2010;21(3):615–26. doi: 10.1093/annonc/mdp581.PubMedCrossRefGoogle Scholar
  37. 37.
    Samet JH, Raj A, Cheng DM, Blokhina E, Bridden C, Chaisson CE, et al. HERMITAGE––a randomized controlled trial to reduce sexually transmitted infections and HIV-risk behaviors among HIV-infected Russian drinkers. Addiction. 2014;. doi: 10.1111/add.12716.PubMedCentralGoogle Scholar
  38. 38.
    National Institute on Alcohol Abuse and Alcoholism. What’s “at-risk” or “heavy” drinking? Accessed 7.18 2011.
  39. 39.
    Weatherby N, Needle R, Cesari H, Booth R, McCoy CB, Watters JK, Williams M, Chitwood DD. Validity of Self-Reported Drug Use among Injection Drug Users and Crack Cocaine Users Recruited through Street Outreach. Eval Program Plan. 1994;17(4):347–55.CrossRefGoogle Scholar
  40. 40.
    Dowling-Guyer S, Johnson M, Fisher D, Needle R, Watters J, Anderson M, Williams M, Kotransld L, Booth R, Rhodes E, Weatherby N, Estada A, Fleming D, Deren S, Tortu S. Reliability of drug users’ self-reported HIV risk behaviors and validity of self-reported recent drug use. Assessment. 1994;1(4):1383–92.Google Scholar
  41. 41.
    Tyurina A, Krupitsky E, Cheng DM, Coleman SM, Walley AY, Bridden C, et al. Is cannabis use associated with HIV drug and sex risk behaviors among Russian HIV-infected risky drinkers? Drug Alcohol Depend. 2013;132(1–2):74–80. doi: 10.1016/j.drugalcdep.2013.01.009.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Grund JP, Latypov A, Harris M. Breaking worse: the emergence of krokodil and excessive injuries among people who inject drugs in Eurasia. Int J Drug Policy. 2013;24(4):265–74. doi: 10.1016/j.drugpo.2013.04.007.PubMedCrossRefGoogle Scholar
  43. 43.
    Beck AT. Depression Inventory. Russian Translation ed. Pearson Educatoin, Inc.; 1996, 2007.Google Scholar
  44. 44.
    Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Sobell LC, Sobell SM. Alcohol Timeline Followback (TLFB); Handbook of Psychiatric Measures. Washington, D.C: American Psychiatric Association; 1996.Google Scholar
  46. 46.
    Hao L, Naiman DQ. Quantile regression. Thousand Oaks: Sage Publications; 2007.Google Scholar
  47. 47.
    Koenker R. Quantile regression. Cambridge; New York: Cambridge University Press; 2005.CrossRefGoogle Scholar
  48. 48.
    Eisenstein TK, Rahim RT, Feng P, Thingalaya NK, Meissler JJ. Effects of opioid tolerance and withdrawal on the immune system. J Neuroimmune Pharmacol. 2006;1(3):237–49. doi: 10.1007/s11481-006-9019-1.PubMedCrossRefGoogle Scholar
  49. 49.
    Weed MR, Carruth LM, Adams RJ, Ator NA, Hienz RD. Morphine withdrawal dramatically reduces lymphocytes in morphine-dependent macaques. J Neuroimmune Pharmacol. 2006;1(3):250–9. doi: 10.1007/s11481-006-9029-z.PubMedCrossRefGoogle Scholar
  50. 50.
    Govitrapong P, Suttitum T, Kotchabhakdi N, Uneklabh T. Alterations of immune functions in heroin addicts and heroin withdrawal subjects. J Pharmacol Exp Ther. 1998;286(2):883–9.PubMedGoogle Scholar
  51. 51.
    Lyles CM, Margolick JB, Astemborski J, Graham NM, Anthony JC, Hoover DR, et al. The influence of drug use patterns on the rate of CD4+ lymphocyte decline among HIV-1-infected injecting drug users. AIDS. 1997;11(10):1255–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Sacerdote P. Opioid-induced immunosuppression. Curr Opin Support Palliat Care. 2008;2(1):14–8. doi: 10.1097/SPC.0b013e3282f5272e.PubMedCrossRefGoogle Scholar
  53. 53.
    Tsui JI, Cheng DM, Coleman SM, Blokhina E, Bridden C, Krupitsky E, et al. Pain is associated with heroin use over time in HIV-infected Russian drinkers. Addiction. 2013;108(10):1779–87. doi: 10.1111/add.12274.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Bouhnik AD, Preau M, Vincent E, Carrieri MP, Gallais H, Lepeu G, et al. Depression and clinical progression in HIV-infected drug users treated with highly active antiretroviral therapy. Antivir Ther. 2005;10(1):53–61.PubMedGoogle Scholar
  55. 55.
    Palfai TP, Cheng DM, Coleman SM, Bridden C, Krupitsky E, Samet JH. The influence of depressive symptoms on alcohol use among HIV-infected Russian drinkers. Drug Alcohol Depend. 2014;134:85–91. doi: 10.1016/j.drugalcdep.2013.09.014.PubMedCrossRefGoogle Scholar
  56. 56.
    Baum MK, Rafie C, Lai S, Sales S, Page JB, Campa A. Alcohol use accelerates HIV disease progression. AIDS Res Hum Retroviruses. 2010;26(5):511–8. doi: 10.1089/aid.2009.0211.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Samet JH, Cheng DM, Libman H, Nunes DP, Alperen JK, Saitz R. Alcohol consumption and HIV disease progression. J Acquir Immune Defic Syndr. 2007;46(2):194–9. doi: 10.1097/QAI.0b013e318142aabb.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, et al. Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol. 2011;6(4):516–27. doi: 10.1007/s11481-011-9301-8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. Jennifer Edelman
    • 1
    Email author
  • Debbie M. Cheng
    • 2
  • Evgeny M. Krupitsky
    • 3
    • 4
  • Carly Bridden
    • 5
  • Emily Quinn
    • 6
  • Alexander Y. Walley
    • 7
  • Dmitry A. Lioznov
    • 3
  • Elena Blokhina
    • 3
  • Edwin Zvartau
    • 3
  • Jeffrey H. Samet
    • 7
    • 8
  1. 1.Section of General Internal Medicine, Department of MedicineYale University School of MedicineNew HavenUSA
  2. 2.Department of BiostatisticsBoston University School of Public HealthBostonUSA
  3. 3.First St. Petersburg Pavlov State Medical UniversitySt. PetersburgRussian Federation
  4. 4.St. Petersburg Bekhterev Research Psychoneurological InstituteSt. PetersburgRussian Federation
  5. 5.Section of General Internal Medicine, Boston Medical Center, Department of MedicineClinical Addiction Research and Education (CARE) UnitBostonUSA
  6. 6.Department of Biostatistics, Data Coordinating CenterBoston University School of Public HealthBostonUSA
  7. 7.Clinical Addiction Research and Education (CARE) Unit, Section of General Internal Medicine, Department of MedicineBoston University School of Medicine/Boston Medical CenterBostonUSA
  8. 8.Department of Community Health SciencesBoston University School of Public HealthBostonUSA

Personalised recommendations