Skip to main content

Advertisement

Log in

Concurrent Sexual Partnerships and Primary HIV Infection: A Critical Interaction

  • Original Paper
  • Published:
AIDS and Behavior Aims and scope Submit manuscript

Abstract

The combination of long-term concurrent sexual partnerships and high infectiousness early in HIV infection has been suggested as a key driver of the extensive spread of HIV in general populations in sub-Saharan Africa, but this has never been scientifically investigated. We use a mathematical model to simulate HIV spreading on sexual networks with different amounts of concurrency. The models show that if HIV infectiousness is constant over the duration of infection, the amount of concurrency has much less influence on HIV spread compared to when infectiousness varies over three stages of infection with high infectiousness in the first months. The proportion of transmissions during primary infection is sensitive to the amount of concurrency and, in this model, is estimated to be between 16 and 28% in spreading epidemics with increasing concurrency. The sensitivity of epidemic spread to the amount of concurrency is greater than predicted by models that do not include primary HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hudson CP. Concurrent partnerships could cause AIDS epidemics. Int J STD AIDS. 1993;4:249–53.

    PubMed  CAS  Google Scholar 

  2. Halperin DT, Epstein H. Concurrent sexual partnerships help to explain Africa’s high HIV prevalence: implications for prevention. Lancet. 2004;364:4–6.

    Article  PubMed  Google Scholar 

  3. Mah TL, Halperin DT. Concurrent sexual partnerships and the HIV epidemics in Africa: evidence to move forward. AIDS Behav. 2010;14:11–6.

    Article  PubMed  Google Scholar 

  4. Watts CH, May RM. The influence of concurrent partnerships on the dynamics of HIV/AIDS. Math Biosci. 1992;108:89–104.

    Article  PubMed  CAS  Google Scholar 

  5. Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11:641–8.

    Article  PubMed  CAS  Google Scholar 

  6. Morris M, Kretzschmar M. A microsimulation study of the effect of concurrent partnerships on the spread of HIV in Uganda. Math Popul Stud. 2000;8:109–33.

    Article  Google Scholar 

  7. Morris M. Concurrent partnerships and syphilis persistence: new thoughts on an old puzzle. Sex Transm Dis. 2001;28:504–7.

    Article  PubMed  CAS  Google Scholar 

  8. Morris M. Barking up the wrong evidence tree. Comment on Lurie & Rosenthal, Concurrent partnerships as a driver of the HIV epidemic in sub-Saharan Africa? The evidence is limited. AIDS Behav. 2010;14:31–3.

    Article  PubMed  Google Scholar 

  9. Powers KA, Poole C, Pettifor AE, Cohen MS. Rethinking the heterosexual infectivity of HIV-1: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8:553–63.

    Article  PubMed  Google Scholar 

  10. Boily MC, Baggaley RF, Wang L, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9:118–29.

    Article  PubMed  Google Scholar 

  11. Lurie MN, Rosenthal S. Concurrent partnerships as a driver of the HIV epidemic in Sub-Saharan Africa? The evidence is limited. AIDS Behav. 2009;14:17–24.

    Article  PubMed  Google Scholar 

  12. Shelton JD. Why multiple sexual partners? Lancet. 2009;374:367–9.

    Article  PubMed  Google Scholar 

  13. Garnett GP, Johnson AM. Coining a new term in epidemiology: concurrency and HIV. AIDS. 1997;11:681–3.

    Article  PubMed  CAS  Google Scholar 

  14. Wawer MJ, Gray RH, Sewankambo NK, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis. 2005;191:1403–9.

    Google Scholar 

  15. Shelton JD. A tale of two-component generalised HIV epidemics. Lancet. 2010;375:964–6.

    Article  PubMed  Google Scholar 

  16. Epstein H. The mathematics of concurrent partnerships and HIV: a commentary on Lurie and Rosenthal, 2009. AIDS Behav. 2010;14:17–24.

    Article  Google Scholar 

  17. Pilcher CD, Tien HC, Eron JJ, et al. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J Infect Dis. 2004;189:1785–92.

    Article  PubMed  Google Scholar 

  18. Pinkerton SD. Probability of HIV transmission during acute infection in Rakai, Uganda. AIDS Behav. 2008;12:677–84.

    Article  PubMed  Google Scholar 

  19. Hollingsworth TD, Anderson RM, Fraser C. HIV-1 transmission, by stage of infection. J Infect Dis. 2008;198:687–93.

    Article  PubMed  Google Scholar 

  20. Hayes RJ, White RG. Amplified HIV transmission during early-stage infection. J Infect Dis. 2006;193:604–5.

    Article  PubMed  Google Scholar 

  21. Koopman JS, Jacquez JA, Welch GW, et al. The role of early HIV infection in the spread of HIV through populations. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;14:249–58.

    Article  PubMed  CAS  Google Scholar 

  22. Abu-Raddad LJ, Longini IM. No HIV stage is dominant in driving the HIV epidemic in sub-Saharan Africa. AIDS. 2008;22:1055–61.

    Article  PubMed  Google Scholar 

  23. Xiridou M, Geskus R, de Wit J, Coutinho R, Kretzschmar M. Primary HIV infection as source of HIV transmission within steady and casual partnerships among homosexual men. AIDS. 2004;18:1311–20.

    Article  PubMed  Google Scholar 

  24. Morris M, Kretzschmar M. Concurrent partnerships and transmission dynamics in networks. Social Netw. 1995;17:299–318.

    Article  Google Scholar 

  25. Kretzschmar M, Morris M. Measures of concurrency in networks and the spread of infectious disease. Math Biosci. 1996;133:165–95.

    Article  PubMed  CAS  Google Scholar 

  26. UNAIDS Reference Group On Estimates Modelling And Projections: Working Group On Measuring Concurrent Sexual Partnerships. HIV: consensus indicators are needed for concurrency. Lancet. 2010;375:621–2.

    Google Scholar 

  27. Gregson S, Garnett GP, Nyamukapa CA, et al. HIV decline associated with behavior change in eastern Zimbabwe. Science. 2006;311:664–6.

    Article  PubMed  CAS  Google Scholar 

  28. Gourvenec D, Taruberekera N, Mochaka O, Kasper T. Multiple concurrent partnerships among men and women aged 15–34 in Botswana: Baseline Study, December 2007, PSI Botswana 2007. http://www.gov.bw/Global/NACAMinistry/PSIBotswana.pdf. Accessed 09 Feb 2010.

  29. Gregson S, Nyamukapa C, Garnett GP, et al. Sexual mixing patterns and sex-differentials in teenage exposure to HIV infection in rural Zimbabwe. Lancet. 2002;359:1896–1903.

    Article  PubMed  Google Scholar 

  30. Kretzschmar M, Dietz K. The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci. 1998;148:83–113.

    Article  PubMed  CAS  Google Scholar 

  31. Dietz K, Heesterbeek JA, Tudor DW. The basic reproduction ratio for sexually transmitted diseases. Part 2. Effects of variable HIV infectivity. Math Biosci. 1993;117:35–47.

    Article  PubMed  CAS  Google Scholar 

  32. Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: patterns of mixing between different age and sexual activity classes. Philos Trans R Soc Lond B Biol Sci. 1993;342:137–59.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson N, Mulder D, Auvert B, Hayes R. Proportion of HIV infections attributable to other sexually transmitted diseases in a rural Ugandan population: simulation model estimates. Int J Epidemiol. 1997;26:180–189.

    Article  PubMed  CAS  Google Scholar 

  34. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet. 2009;373:48–57.

    Article  PubMed  Google Scholar 

  35. Fiscus SA, Pilcher CD, Miller WC, et al. Rapid, real-time detection of acute HIV infection in patients in Africa. J Infect Dis. 2007;195:416–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Eaton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (198 KB)

ZIP (998 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, J.W., Hallett, T.B. & Garnett, G.P. Concurrent Sexual Partnerships and Primary HIV Infection: A Critical Interaction. AIDS Behav 15, 687–692 (2011). https://doi.org/10.1007/s10461-010-9787-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10461-010-9787-8

Keywords

Navigation