Socio-economic research on genetically modified crops: a study of the literature

Abstract

The importance of socio-economic impacts (SEI) from the introduction and use of genetically modified (GM) crops is reflected in increasing efforts to include them in regulatory frameworks. Aiming to identify and understand the present knowledge on SEI of GM crops, we here report the findings from an extensive study of the published international scientific peer-reviewed literature. After applying specified selection criteria, a total of 410 articles are analysed. The main findings include: (i) limited empirical research on SEI of GM crops in the scientific literature; (ii) the main focus of the majority of the published research is on a restricted set of monetary economic parameters; (iii) proportionally, there are very few empirical studies on social and non-monetary economic aspects; (iv) most of the research reports only short-term findings; (v) the variable local contexts and conditions are generally ignored in research methodology and analysis; (vi) conventional agriculture is the commonly used comparator, with minimal consideration of other substantially different agricultural systems; and (vii) there is the overall tendency to frame the research upon not validated theoretical assumptions, and to over-extrapolate small-scale and short-term specific results to generalized conclusions. These findings point to a lack of empirical and comprehensive research on SEI of GM crops for possible use in decision-making. Broader questions and improved methodologies, assisted by more rigorous peer-review, will be required to overcome current research shortcomings.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

GM:

Genetically modified

GMOs:

Genetically modified organisms

R&D:

Research and development

SE:

Socio-economic

SEI:

Socio-economic impact(s)

References

  1. Adi, B. 2006. Intellectual property rights in biotechnology and the fate of poor farmers’ agriculture. Journal of World Intellectual Property 9 (1): 91–112.

    Article  Google Scholar 

  2. Altieri, M. A. 2005. The myth of coexistence: Why transgenic crops are not compatible with agroecologically-based systems of production. Bulletin of Science, Technology & Society 25 (4): 361–371.

    Article  Google Scholar 

  3. Altieri, M. A., and C. Nicholls. 2003. Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72 (2): 203–211.

    Article  Google Scholar 

  4. Anderson, K., and L. A. Jackson. 2005. Some implications of GM food technology policies for Sub-Saharan Africa. Journal of African Economies 14 (3): 385–410.

    Article  Google Scholar 

  5. Areal, F. J., L. Riesgo, and E. Rodríguez-Cerezo. 2013. Economic and agronomic impact of commercialized GM crops: A meta-analysis. Journal of Agricultural Sciences 153: 7–33.

    Google Scholar 

  6. Arunachalam, V., and S. B. Ravi. 2003. Conceived conclusions in favour of GM cotton? A riposte to a paper in Science. Current Science 85 (8): 1117–1119.

    Google Scholar 

  7. Asante, D. K. 2008. Genetically modified food. The dilemma of Africa. African Journal of Biotechnology 7 (9): 1204–1211.

    Google Scholar 

  8. Asdal, K., and I. Moser. 2012. Experiments in context and contexting. Science, Technology & Human Values 37 (4): 291–306.

    Article  Google Scholar 

  9. Barwale, F. B., V. R. Gadwal, U. Zehr, and B. Zehr. 2004. Prospects for Bt cotton technology in India. AgBioForum 7 (1–2): 23–26.

    Google Scholar 

  10. BCH-CBD (Biosafety Clearing House of the Cartagena Protocol of Biosafety). Living Modified Organisms (LMO) Registry. 2016. http://bch.cbd.int/database/lmo-registry/. Accessed 14 May 2016.

  11. Benbrook, C. M. 2012. Impacts of genetically engineered crops on pesticide use in the US—the first sixteen years. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-24-2.

    Google Scholar 

  12. Bereano, P. 2012. Why the US should support full implementation of Article 26, the consideration of socio-economic consequences of LMOs. ECO (43). Catacora: CBD Alliance.

    Google Scholar 

  13. Berger, G. U., and D. P. Braga. 2009. Report on Environmental and Food Biosafety of Soybean MON 87701 x MON 89788. Sao Paulo: Monsanto do Brazil.

    Google Scholar 

  14. Binimelis, R. 2008. Coexistence of plants and coexistence of farmers: Is an individual choice possible? Journal of Agricultural and Environmental Ethics 21 (5): 437–457.

    Article  Google Scholar 

  15. Binimelis, R., and A. I. Myhr. 2016. Inclusion and implementation of socio-economic considerations in GMO regulations: Needs and recommendations. Sustainability. https://doi.org/10.3390/su8010062.

    Google Scholar 

  16. Bouis, H. E. 2002. Three criteria for establishing the usefulness of biotechnology for reducing micronutrient malnutrition. Food and Nutrition Bulletin 23 (4): 351–353.

    Article  Google Scholar 

  17. Bouis, H. E. 2007. The potential of genetically modified food crops to improve human nutrition in developing countries. Journal of Development Studies 43 (1): 79–96.

    Article  Google Scholar 

  18. Bouis, H. E., and R. M. Welch. 2010. Biofortification: A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: S20–S21.

    Article  Google Scholar 

  19. Brooks, S. 2005. Biotechnology and the politics of truth: From the green revolution to an evergreen revolution. Sociologia Ruralis 45 (4): 360–379.

    Article  Google Scholar 

  20. Bryant, K. J., R. L. Nichols, C. T. Allen, N. R. Benson, F. M. Bourland, L. D. Earnest, M. S. Kharboutli, K. Smith, and E. P. Webster. 2003. Transgenic cotton cultivars: An economic comparison in Arkansas. International Journal of Cotton Science 7: 194–204.

    Google Scholar 

  21. Callon, M., and J. Law. 1982. On interests and their transformation: Enrolment and counter-enrolment. Social Studies of Science 12 (4): 615–625.

    Article  Google Scholar 

  22. Catacora-Vargas, G. 2012. Socio-economic considerations under the Cartagena Protocol on Biosafety: Insights for effective implementation. Asian Biotechnology and Development Review 14 (3): 1–17.

    Google Scholar 

  23. Catacora-Vargas, G., P. Galeano, S. Agapito-Tenfen, D. Aranda, T. Palau, and R. O. Nodari. 2012. Soybean production in the Southern Cone of the Americas: Update on land and pesticide use. Cochabamba: GenØk/UFSC/REDES-AT/BASE-Is.

    Google Scholar 

  24. Christou, P., and R. M. Twyman. 2004. The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews 17 (1): 23–42.

    Article  Google Scholar 

  25. COGEM (Commissie Genetishe Modificatie). 2009. Socio-economic aspects of GMO’s. Building blocks for an EU sustainability assessment of genetically modified crops. Report CGM/090929–01. http://www.cogem.net/index.cfm/en/publications/publicatie/socio-economic-aspects-of-gmo-s Accessed 6 Mar 2016.

  26. Danish Council of Ethics. 2012. Report on bioenergy, food production, and ethics in a globalised world. Copenhagen: Danish Council of Ethics.

    Google Scholar 

  27. DFID (United Kingdom Department for International Development). 2014. Economic development for shared prosperity and poverty reduction: A strategic framework. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/276859/Econ-development-strategic-framework.pdf Accessed 15 Aug 2016.

  28. Dibden, J., D. Gibbs, and C. Cocklin. 2013. Framing GM crops as a food security solution. Journal of Rural Studies 29: 59–70.

    Article  Google Scholar 

  29. EFSA Panel on Genetically Modified Organisms (GMO). 2012. Scientific opinion on application (EFSA-GMO-NL-2009–73) for the placing on the market of insect-resistant and herbicide tolerant genetically modified soybean MON 87701 × MON 89788 for food and feed uses, import and processing under Regulation (EC) No. 182. Parma: EFSA.

    Google Scholar 

  30. Ely, A., P. Van Zwanenberg, and A. Stirling. 2014. Broadening out and opening up technology assessment: Approaches to enhance international development, co-ordination and democratisation. Research Policy 43 (3): 505–518.

    Article  Google Scholar 

  31. Ervin, D. E., and R. Jussaume. 2014. Integrating social science into managing herbicide-resistant weeds and associated environmental impacts. Weed Science 62: 403–414.

    Article  Google Scholar 

  32. Ervin, D. E., and R. Welsh. 2006. Environmental effects of genetically modified crops: Differentiated risk assessment and management. In Regulating Agricultural Biotechnology: Economics and Policy, eds. R. E. Just, E. Julian, M. Alston, and D. Zilberman, 301–326. Boston: Springer.

    Google Scholar 

  33. Ervin, D. E., L. L. Glenna, and R. A. Jussaume Jr. 2011. The theory and practice of genetically engineered crops and agricultural sustainability. Sustainability 3 (6): 847–874.

    Article  Google Scholar 

  34. Espinoza-Esquivel, A. M., and G. Arrieta-Espinoza. 2007. A multidisciplinary approach directed towards the commercial release of transgenic herbicide-tolerant rice in Costa Rica. Transgenic Research 16: 541–555.

    Article  Google Scholar 

  35. European Environment Council. 2008. Council conclusions on genetically modified organisms (GMOs). 2912th Environment Council Meeting. http://www.consilium.europa.eu/ueDocs/cms_Data/docs/pressData/en/envir/104509.pdf Accessed 25 Sept 2016.

  36. Falck-Zepeda, J. B., and M. Gouse. 2017. Regulation of GMOs in developing countries: Why socio-economic considerations matter for decision-making. In Genetically modified organisms in developing countries, eds. A. Adenle, E. Jane, Morris, and D. J. Murphy, 91–102. Cambridge: Cambridge University Press.

    Google Scholar 

  37. Falck-Zepeda, J. B., and P. Zambrano. 2011. Socioeconomic considerations in biosafety and biotechnology decision making: The cartagena protocol and national biosafety frameworks. Review of Policy Research. https://doi.org/10.1111/j.1541-1338.2011.00488.x.

    Google Scholar 

  38. Felt, U., B. Wynne, M. Callon, M. E. Gonçalves, S. Jasanoff, M. Jepsen, P. B. Joly, Z. Konopasek, S. May, C. Neubauer, A. Rip, K. Siune, A. Stirling, and M. Tallacchini. 2007. Taking European knowledge society seriously. European Commission, Science and Governance Expert Group Report. EUR 22750. Brussels: DG Research.

    Google Scholar 

  39. Fischer, K. 2016. Why new crop technology is not scale-neutral: A critique of the expectations for a crop-based African Green Revolution. Research Policy 45 (6): 1185–1194.

    Article  Google Scholar 

  40. Fischer, K., E. Ekener-Petersen, L. Rydhmer, and K. E. Björnberg. 2015. Social impacts of GM crops in agriculture: A systematic literature review. Sustainability. https://doi.org/10.3390/su7078598.

    Google Scholar 

  41. Flyvbjerg, B. 2005. Social science that matters. Foresight Europe 2: 38–42.

    Google Scholar 

  42. Francescon, S. 2006. The impact of GMOs on poor countries: A threat to the achievement of the Millennium Development Goals? Biology Forum/Rivista di Biologia 99: 381–394.

    Google Scholar 

  43. Freese, B. 2012. Comments to USDA APHIS on Draft Environmental Assessment and Draft Plant Pest Risk Assessment for Dow AgroSciences Petition (09–349-01p) for Determination of Nonregulated Status of Event DAS-68416-4: 2,4-D-and glufosinate-resistant soybean. Washington D.C.: The Center for Food Safety.

    Google Scholar 

  44. Glenna, J. J., R. A. Jussaume Jr., and J. C. Dawson. 2011. How farmers matter in shaping agricultural technologies: Social and structural characteristics of wheat growers and wheat varieties. Agricultural and Human Values 28: 213–224.

    Article  Google Scholar 

  45. Glenna, J. J., J. Tooker, J. R. Welsh, and D. Ervin. 2015. Intellectual property, scientific independence, and the efficacy and environmental impacts of genetically engineered crops. Rural Sociology 80 (2): 147–172 .

    Article  Google Scholar 

  46. Glover, D. 2010a. Exploring the resilience of Bt cotton’s “pro-poor success story”. Development and Change 41 (6): 955–981.

    Article  Google Scholar 

  47. Glover, D. 2010b. Is Bt cotton a pro-poor technology? A Review and critique of the empirical record. Journal of Agrarian Change 10 (4): 482–509.

    Article  Google Scholar 

  48. Gouse, M., J. Kirsten, B. Shankar, and C. Thirtle. 2005. Bt cotton in KwaZulu Natal: Technological triumph but institutional failure. AgBiotechNet 7 (134): 1–7.

    Google Scholar 

  49. Greiter, A., M. Miklau, A. Heissenberger, and H. Gaugitsch. 2011. Socio-economic aspects in the assessment of GMOs: Options for action. REP-0354. Vienna: Environment Agency Austria. http://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0354.pdf Accessed 6 Mar 2016.

  50. Gurian-Sherman, D. 2009. Failure to yield: Evaluating the performance of genetically engineered crops. Cambridge: Union of Concerned Scientists.

    Google Scholar 

  51. Harremoës, P., D. Gee, M. MacGarvin, A. Stirling, J. Keys, B. Wynne, S. Guedes Vas, eds. 2001. Late lessons from early warnings: The precautionary principle in the 20th century. vol. 1. Copenhagen: European Environment Agency.

    Google Scholar 

  52. Heinemann, J. A. 2009. Hope not hype: The future of agriculture guided by the international assessment of agricultural knowledge, science, and technology for development. Penang: TWN.

    Google Scholar 

  53. Heinemann, J. A., M. Massaro, D. S. Coray, S. Agapito-Tenfen, and J. D. Wen. 2014. Sustainability and innovation in staple crop production in the US Midwest. International Journal of Agricultural Sustainability 1: 71–88.

    Article  Google Scholar 

  54. Herrero, A., F. Wickson, and R. Binimelis. 2015. Seeing GMOs from a systems perspective: The need for comparative cartographies of agri/cultures for sustainability assessment. Sustainability 7 (8): 11321–11344.

    Article  Google Scholar 

  55. Hilbeck, A., T. Lebrecht, R. Vogel, J. A. Heinemann, and R. Binimelis. 2013. Farmer’s choice of seeds in four EU countries under different levels of GM crop adoption. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-25-12.

    Google Scholar 

  56. Hobart, M., ed. 1993. An anthropological critique of development: The growth of ignorance. London: Routledge.

    Google Scholar 

  57. IAASTD (International Assessment of Agricultural Knowledge Science and Technology for Development). 2009. Agriculture at crossroad. Global report. Washington D.C.: Island Press.

    Google Scholar 

  58. Interorganizational Committee on Principles and Guidelines for Social Impact Assessment. 2003. Principles and guidelines for social impact assessment in the USA. Impact Assessment and Project Appraisal 21(3): 231–250.

    Article  Google Scholar 

  59. Jansen, K., and A. Gupta. 2009. Anticipating the future: “Biotechnology for the poor” as unrealized promise? Futures 41 (7): 436–445.

    Article  Google Scholar 

  60. Jasanoff, S., ed. 2004. States of knowledge: The co-production of science and the social order. London/New York: Routledge.

    Google Scholar 

  61. Kaphengst, T., N. El Benni, C. Evans, R. Finger, S. Herbert, S. Morse, and N. Stupak. 2011. Final report. Assessment of the economic performance of GM crops worldwide. ENV.B.3/ETU/2009/0010. Reading: University of Reading/ETH.

    Google Scholar 

  62. Kleinman, D. L., and A. J. Kinchy. 2007. Against the neoliberal steamroller? The biosafety protocol and the social regulation of agricultural biotechnologies. Agriculture and Human Values 24 (2): 195–206.

    Article  Google Scholar 

  63. Klümper, W., and M. Qaim. 2014. A meta-analysis of the impacts of genetically modified crops. PLoS ONE 9 (11): e111629.

    Article  Google Scholar 

  64. Knezevic, S. Z. 2007. Herbicide tolerant crops: 10 years later. Maydica 52 (3): 245–250.

    Google Scholar 

  65. Kolady, D. E., and W. Lesser. 2008. Is genetically engineered technology a good alternative to pesticide use?: The case of GE eggplant in India. International Journal of Biotechnology 10 (2–3): 132–147.

    Article  Google Scholar 

  66. Leach, M., I. Scoones, and A. Stirling. 2010. Dynamic sustainabilities: Technology, environment, social justice. London: Earthscan.

    Google Scholar 

  67. Lélé, S. M. 1991. Sustainable development: A critical review. World Development 19 (6): 607–621.

    Article  Google Scholar 

  68. Mackenzie, R., F. Burhenne-Guilmin, A. G. M. La Viña, J. D. Werksman, A. Ascencio, J. Kinderlerer, K. Kummer, and R. Tapper. 2004. An explanatory guide to the Cartagena Protocol on Biosafety. Cambridge: IUCN.

    Google Scholar 

  69. Mannion, A., and S. Morse. 2013. GM crops 1996–2012: A review of agronomic, environmental and socio-economic impacts. Working Paper 04/13. Reading: University of Reading/University of Surrey.

    Google Scholar 

  70. Mascarenhas, M., and L. Busch. 2006. Seeds of change: Intellectual property rights, genetically modified soybeans and seed saving in the United States. Sociologica Ruralis 46 (2): 122–138.

    Article  Google Scholar 

  71. Mugo, S., H. De Groote, D. Bergvinson, M. Mulaa, J. Songa, and S. Gichuki. 2005. Developing Bt maize for resource-poor farmers: Recent advances in the IRMA project. African Journal of Biotechnology 4 (13): 1490–1504.

    Google Scholar 

  72. NASEM (The National Academies of Sciences, Engineering and Medicine). 2016. Genetically engineered crops: Experiences and prospects. Washington DC: The National Academies Press.

    Google Scholar 

  73. Nkwake, A. M. 2012. Working with assumptions in international development program evaluation. New York: Springer.

    Google Scholar 

  74. Nordgård, L., I. Grønsberg, M. Cuhra, M. Iversen, and R. Binimelis. 2013. Assessment of the technical dossier submitted under EFSA/GMO/NL/2012/108 for approval of transgenic soy, MON 87708 x MON 89788, Monsanto Company. Tromsø: GenØk – Centre for Biosafety.

    Google Scholar 

  75. NRC (National Research Council) 2010. Committee on the impact of biotechnology on farm-level economics and sustainability. The Impact of genetically engineered crops on farm sustainability in the United States. Washington, DC: National Academies Press.

    Google Scholar 

  76. Park, J., I. McFarlane, R. Phipps, and G. Ceddia. 2011. The impact of the EU regulatory constraint of transgenic crops on farm income. New Biotechnology 28 (4): 396–406.

    Article  Google Scholar 

  77. Pavone, V., J. Goven, and R. Guarino. 2011. From risk assessment to in-context trajectory evaluation: GMOs and their social implications. Environmental Sciences Europe. https://doi.org/10.1186/2190-4715-23-3.

    Google Scholar 

  78. Pemsl, D. E., M. Voelker, L. Wu, and H. Waibel. 2011. Long-term impact of Bt cotton: Findings from a case study in China using panel data. International Journal of Agricultural Sustainability 9 (4): 508–521.

    Article  Google Scholar 

  79. Phillips, P. C. 2003. Laws and limits of econometrics. The Economic Journal 113 (486): 26–52.

    Article  Google Scholar 

  80. Potrykus, I. 2010. Lessons from the “Humanitarian Golden Rice” project: Regulation prevents development of public good genetically engineered crop products. New Biotechnology 27 (5): 466–472.

    Article  Google Scholar 

  81. Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Management Science 64 (4): 360–365.

    Article  Google Scholar 

  82. Pray, C. E., and A. Naseem. 2007. Supplying crop biotechnology to the poor: Opportunities and constraints. Journal of Development Studies 43 (1): 192–217.

    Article  Google Scholar 

  83. Pretty, J. 2001. The rapid emergence of genetic modification in world agriculture: Contested risks and benefits. Environmental Conservation 28 (03): 248–262.

    Article  Google Scholar 

  84. Qaim, M. 2003. Bt cotton in India: Field trial results and economic projections. World Development 31 (12): 2115–2127.

    Article  Google Scholar 

  85. Qaim, M. 2005. Agricultural biotechnology adoption in developing countries. American Journal of Agricultural Economics 87 (5): 1317–1324.

    Article  Google Scholar 

  86. Qaim, M., and D. Zilberman. 2003. Yield effects of genetically modified crops in developing countries. Science 299 (5608): 900–902.

    Article  Google Scholar 

  87. Richards, D. G. 2010. Contradictions of the “new Green Revolution”: A view from South America’s southern cone. Globalizations 7 (4): 563–576.

    Article  Google Scholar 

  88. Rip, A. 2002. Co-evolution of science, technology and society. In Expert review for the Bundesministerium Bildung und Forschung’s Förderinitiatieve, Politik, Wissenschaft und Gesellschaft, as managed by the Berlin-Brandenburgische Akademie der Wissenschaften. Enschede: Twente University.

    Google Scholar 

  89. Rivera-Ferre, M. G. 2008. The future of agriculture. EMBO Reports 9 (11): 1061–1066.

    Article  Google Scholar 

  90. Rudy, A. P., D. Coppin, J. Konefal, B. T. Shaw, T. T. Eyck, C. Harris, and L. Busch. 2007. Universities in the Age of Corporate Science: The UC Berkeley-Novartis Controversy. Philadelphia: Temple University Press.

    Google Scholar 

  91. Satterfield, T., R. Gregory, S. Klain, M. Roberts, and K. M. Chan. 2013. Culture, intangibles and metrics in environmental management. Journal of Environmental Management 117: 103–114.

    Article  Google Scholar 

  92. SCBD (Secretariat of the Convention on Biological Diversity). 2000. Text of the Cartagena protocol. Montreal: CBD.

    Google Scholar 

  93. SCBD (Secretariat of the Convention on Biological Diversity). 2003. The Cartagena protocol on biosafety. Record of the negotiations. Montreal: CBD.

    Google Scholar 

  94. SCBD (Secretariat of the Convention on Biological Diversity). 2014. Global overview of information on socioeconomic considerations arising from the impact of living modified organisms on the conservation and sustainable use of biological diversity. Ad-hoc Technical Expert Group on Socioeconomic Considerations. Report UNEP/CBD/BS/AHTEG-SEC/1/2. Montreal: CBD.

  95. Scott, J. 1998. Seeing like a state: How certain schemes to improve the human condition have failed. New Haven: Yale University Press.

    Google Scholar 

  96. Smale, M., P. Zambrano, G. Gruère, J. B. Falck-Zepeda, I. Matuschke, D. Horna, L. Nagarajan, I. Yerramareddy, and H. Jones. 2009. Measuring the economic impacts of transgenic crops in developing agriculture during the first decade: Approaches, findings, and future directions. Washington D.C.: IFPRI.

    Google Scholar 

  97. Spielman, D. J. 2007. Pro-poor agricultural biotechnology: Can the international research system deliver the goods? Food Policy 32 (2): 189–204.

    Article  Google Scholar 

  98. Spök, A. 2010. Assessing socio-economic impacts of GMOs, issues to consider for policy development: Final report. Vienna: Federal Ministry of Health; Federal Ministry for Agriculture, Forestry, Environment, and Water Management.

    Google Scholar 

  99. Stabinsky, D. 2000. Bringing social analysis into a multilateral environmental agreement: Social impact assessment and the biosafety protocol. The Journal of Environment & Development 9 (3): 260–283.

    Article  Google Scholar 

  100. Stirling, A. 1999. Risk at a turning point. Journal of Risk Research 1 (2): 97–109.

    Article  Google Scholar 

  101. Stone, G. D. 2010. The anthropology of genetically modified crops. Annual Review of Anthropology 39: 381–400.

    Article  Google Scholar 

  102. Stone, G. D. 2011. Field versus farm in Warangal: Bt cotton, higher yields, and larger questions. World Development 39 (3): 387–398.

    Article  Google Scholar 

  103. Taverniers, I., N. Papazova, Y. Bertheau, M. De Loose, and A. Holst-Jensen. 2008. Gene stacking in transgenic plants: towards compliance between definitions, terminology, and detection within the EU regulatory framework. Environmental Biosafety Research 7 (4): 197–218.

    Article  Google Scholar 

  104. The World Bank. 2008. World development report. Agriculture for development https://siteresources.worldbank.org/INTWDR2008/Resources/WDR_00_book.pdf Accessed 15 Aug 2016.

  105. Thomas, H., M. Fressoli, and A. Lalouf. 2008. Introducción. In Sociología de la tecnología. Actos, actores y artefactos, eds. H. Thomas, and A. Buch, 9–17. Buenos Aires: Universidad de Quilmes.

    Google Scholar 

  106. Thompson, J., and I. Scoones. 2009. Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environmental Science & Policy 12 (4): 386–397.

    Article  Google Scholar 

  107. Thompson, J., E. Millstone, I. Scoones, A. Ely, F. Marshall, E. Shah, S. Stagl, and J. Wilkinson. 2007. Agri-food system dynamics: Pathways to sustainability in an era of uncertainty (No. 4). Brighton: STEPS.

    Google Scholar 

  108. UN (United Nations). 2007. 61/295. United Nations Declaration on the Rights of Indigenous Peoples. https://documents-dds-ny.un.org/doc/UNDOC/GEN/N06/512/07/PDF/N0651207.pdf?OpenElement. Accessed 2 July 2016.

  109. Vanloqueren, G., and P. Baret. 2009. How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy 38: 671–683.

    Article  Google Scholar 

  110. Walters, R. 2006. Crime, bio-agriculture and the exploitation of hunger. British Journal of Criminology 46 (1): 26–45.

    Article  Google Scholar 

  111. Wang, S., D. R. Just, and P. Pinstrup-Andersen. 2008. Bt–cotton and secondary pests. International Journal of Biotechnology 10 (2–3): 113–121.

    Article  Google Scholar 

  112. WEF (World Economic Forum). 2012. Putting the new vision for agriculture into action: A transformation is happening. Geneva: WEF.

    Google Scholar 

  113. Wynne, B. 2005. Reflexing complexity: Post-genomic knowledge and reductionist returns in public science. Theory, Culture and Society 22 (5): 67–94.

    Article  Google Scholar 

  114. Wynne, B., and A. Stirling. 2007. Normalising Europe through Science: Risk, Uncertainty and Precaution. Chapter 3. In Taking European knowledge society seriously. European Commission, Science and Governance Expert Group Report. EUR 22750, rapporteur, ed. U. Felt and B. Wynne, 31–42. Brussels: DG Research.

    Google Scholar 

  115. Zadoks, J. C., and H. Waibel. 2000. From pesticides to genetically modified plants: history, economics and politics. NJAS–Wageningen Journal of Life Sciences 48 (2): 125–149.

    Article  Google Scholar 

  116. Zamir, D. 2008. Plant breeders go back to nature. Nature Genetics 40 (3): 269–270.

    Article  Google Scholar 

Download references

Acknowledgements

Georgina Catacora-Vargas did not receive any specific financial support for the research involved in the preparation of this article. Rosa Binimelis acknowledges partial financial support for her work at The Agri/Cultures Project funded by the Norwegian Research Council (Grant No. 231146). Anne Ingeborg Myhr worked on this manuscript as part of her regular activities at GenØk – Centre for Biosafety, without any specific grant. Before retirement, Brian Wynne worked on this research as part of his regular Lancaster University activities. The co-authors thank two anonymous reviewers for their insightful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Georgina Catacora-Vargas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Catacora-Vargas, G., Binimelis, R., Myhr, A.I. et al. Socio-economic research on genetically modified crops: a study of the literature. Agric Hum Values 35, 489–513 (2018). https://doi.org/10.1007/s10460-017-9842-4

Download citation

Keywords

  • Socio-economic impacts
  • Genetically modified crops
  • Research methods