Skip to main content

Advertisement

Log in

Multiple aspects of unnaturalness: are cisgenic crops perceived as being more natural and more acceptable than transgenic crops?

  • Published:
Agriculture and Human Values Aims and scope Submit manuscript

Abstract

In Europe the use of genetically modified (GM) crops in food production has so far failed to gain wide public approval. Ordinary people are concerned about issues not covered by the existing regulation, including usefulness and unnaturalness. In response, particularly to worries about unnaturalness, biotechnologists have suggested that inserted genes should derive only from the plant itself, or from close relatives. This paper examines public perceptions of these so-called ‘cisgenic crops’ and asks whether the public shares the idea that they are less unnatural and thus more acceptable than transgenic plants. Using five focus group interviews, we identified five lines of argument about naturalness with a bearing on the assessment of cisgenic crops as well as GM crops in general. The paper concludes that, depending on perceptions of naturalness, some people would agree that cisgenic crops are more acceptable than their transgenic counterparts. The finding that ordinary people value different aspects of naturalness may be relevant to a broader audience than just those interested in gene technology. It cautions against a simplistic interpretation of what counts as ‘natural’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Conner, A.J. 2007. Intragenic vectors for gene transfer without foreign DNA. Euphytica 154(3): 341–353.

    Article  Google Scholar 

  • De Cock, B.T., E.T. Lammerts van Bueren, M.A. Haring, H.C. de Vriend, and P.C. Struik. 2006. ‘Cisgenic’ as a product designation. Nature Biotechnology 24(11): 1329–1331.

    Article  Google Scholar 

  • Deckers, J. 2005. Are scientists right and non-scientists wrong? Reflections on discussions of GM. Journal of Agricultural and Environmental Ethics 18(5): 451–478.

    Article  Google Scholar 

  • European Commission. 2010. Proposal for amending directive 2001/18/EC as regards the possibility for the member states to restrict or prohibit the cultivation of GMOs in their territory—COM(2010) 375 final.

  • Finucane, M.L., A. Alhakami, P. Slovic, and S.M. Johnson. 2000. The affect heuristic in judgments of risks and benefits. Journal of Behavioral Decision Making 13(1): 1–17.

    Article  Google Scholar 

  • Gaskell, G., S. Stares, A. Allansdottir, N. Allum, P. Castro, Y. Esmer, C. Fischler, J. Jackson, N. Kronberger, J. Hampel, N. Mejlgaard, A. Quintanilha, A. Rammer, G. Revuelta, P. Stoneman, H. Torgersen, and W. Wagner. 2010. Europeans and biotechnology in 2010: Winds of change? Report for the European Commission’s Directorate-General for Research.

  • Gaskell, G., N. Allum, M. Bauer, J. Durant, A. Allansdottir, H. Bonfadelli, D. Boy, S. de Chevigné, B. Fjastad, J.M. Guttling, J. Hampel, E. Jelsøe, J.C. Jesuino, M. Kohring, N. Kronberger, C. Midden, T.H. Nielsen, A. Przestalski, T. Rusanen, G. Sakellaris, H. Torgersen, T. Twardowski, and W. Wagner. 2000. Biotechnology and the European public. Nature Biotechnology 18(9): 935–938.

    Article  Google Scholar 

  • Giddings, L.V. 2006. ‘Cisgenic’ as a product designation. Nature Biotechnology 24(11): 1329.

    Article  Google Scholar 

  • Lassen, J., and A. Jamison. 2006. Genetic technologies meet the public: The discourses of concern. Science, Technology and Human Values 31(1): 8–28.

    Article  Google Scholar 

  • Madsen, K.H., P.B. Holm, J. Lassen, and P. Sandøe. 2002. Ranking genetically modified plants according to familiarity. Journal of Agricultural and Environmental Ethics 15(3): 267–278.

    Article  Google Scholar 

  • Myskja, B.K. 2006. The moral difference between intragenic and transgenic modification of plants. Journal of Agricultural and Environmental Ethics 19(3): 225–238.

    Article  Google Scholar 

  • Nickson, T.E., and M.J. Horak. 2006. Assessing familiarity: The role of plant characterization. In Proceedings of the ninth international symposium on the biosafety of genetically modified organisms, ed. A. Roberts, 76–80. Saskatoon, Canada: International Society for Biosafety Research.

    Google Scholar 

  • Nielsen, K.M. 2003. Transgenic organisms—Time for conceptual diversification? Nature Biotechnology 21(3): 227–228.

    Article  Google Scholar 

  • Nielsen, A.P., J. Lassen, and P. Sandøe. 2005. Involving the public: Participatory methods and democratic ideals. In Biotechnology ethics: An introduction, ed. L. Landeweerd, L.M. Houdebine, and R. Termeulen, 315–325. Firenze: IAAS-EDAP.

    Google Scholar 

  • Ridder, B. 2007. An exploration of the value of naturalness and wild nature. Journal of Agricultural and Environmental Ethics 20(2): 195–213.

    Article  Google Scholar 

  • Robert, J.S., and F. Baylis. 2003. Crossing species boundaries. American Journal of Bioethics 3(3): 1–13.

    Article  Google Scholar 

  • Rommens, C.M., M.A. Haring, K. Swords, H.V. Davies, and W.R. Belknap. 2007. The intragenic approach as a new extension to traditional plant breeding. Trends in Plant Science 12(9): 397–403.

    Article  Google Scholar 

  • Russell, W., and R. Sparrow. 2008. The case for regulating intragenic GMOs. Journal of Agricultural and Environmental Ethics 21(2): 153–181.

    Article  Google Scholar 

  • Schouten, H.J., and E. Jacobsen. 2008. Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends in Plant Science 13(6): 260–261.

    Article  Google Scholar 

  • Schouten, H.J., F.A. Krens, and E. Jacobsen. 2006. Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports 7(8): 750–753.

    Article  Google Scholar 

  • Shaw, A. 2002. “It just goes against the grain”. Public understandings of genetically modified (GM) food in the UK. Public Understanding of Science 11(3): 273–291.

    Article  Google Scholar 

  • Siipi, H. 2008. Dimensions of naturalness. Ethics and the Environment 13(1): 72–99.

    Article  Google Scholar 

  • Streiffer, R., and T. Hedemann. 2005. The political import of intrinsic objections to genetically engineered food. Journal of Agricultural and Environmental Ethics 18(2): 191–210.

    Article  Google Scholar 

  • Torgersen, H., J. Hampel, M. von Bergmann-Wienberg, E. Bridgeman, J. Durant, E. Einsiedel, B. Fjæstad, G. Gaskell, P. Grabner, P. Hieber, E. Jelsøe, J. Lassen, A. Marouda-Chathoulis, T.H. Nielsen, T. Rusanen, G. Sakellaris, F. Seifert, C. Smink, T. Twardowski, and M. Kamara. 2002. Promise, problems and proxies: Twenty-five years of debate and regulation in Europe. In Biotechnology: The making of a global controversy, ed. M.W. Bauer, and G. Gaskell, 21–94. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S.E. 2003. The uses of argument. New York: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

This work was funded by the Danish Food Industry Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Mielby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielby, H., Sandøe, P. & Lassen, J. Multiple aspects of unnaturalness: are cisgenic crops perceived as being more natural and more acceptable than transgenic crops?. Agric Hum Values 30, 471–480 (2013). https://doi.org/10.1007/s10460-013-9430-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10460-013-9430-1

Keywords

Navigation