Ashley, E. A., Raxwal, V. K., & Froelicher, V. F. (2000). The prevalence and prognostic significance of electrocardiographic abnormalities. Current Problems in Cardiology,
25(1), 1–72.
Article
Google Scholar
Boutis, K., Cano, S., Pecaric, M., Welch-Horan, T. B., Lampl, B., Ruzal-Shapiro, C., et al. (2016). Interpretation difficulty of normal versus abnormal radiographs using a pediatric example. Canadian Medical Education Journal,
7(1), e68–e77.
Google Scholar
Brennan, R. L. (2001). Multivariate unbalanced designs. In R. L. Brennan (Ed.), Generalizability theory (pp. 384–387). New York: Springer.
Chapter
Google Scholar
Chudgar, S. M., Engle, D. L., O’Connor, Grochowski C., & Gagliardi, J. P. (2016). Teaching crucial skills: An electrocardiogram teaching module for medical students. Journal of Electrocardiology,
49(4), 490–495.
Article
Google Scholar
Cook, D. A. (2015). Much ado about differences: Why expert-novice comparisons add little to the validity argument. Advances in Health Sciences Education, 20(3), 829–834.
Article
Google Scholar
Cook, D. A., Brydges, R., Ginsburg, S., & Hatala, R. (2015). A contemporary approach to validity arguments: A practical guide to Kane’s framework. Medical Education,
49(6), 560–575.
Article
Google Scholar
Cook, D. A., & Lineberry, M. (2016). Consequences validity evidence: Evaluating the impact of educational assessments. Academic Medicine,
91(6), 785–795.
Article
Google Scholar
De Bacquer, D., De Backer, G., Kornitzer, M., & Blackburn, H. (1998). Prognostic value of ECG findings for total, cardiovascular disease, and coronary heart disease death in men and women. Heart,
80(6), 570–577.
Article
Google Scholar
Ericsson, K. A. (2015). Acquisition and maintenance of medical expertise. Academic Medicine,
90(11), 1471–1486.
Article
Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review,
100(3), 363–406.
Article
Google Scholar
Fent, G., Gosai, J., & Purva, M. (2015). Teaching the interpretation of electrocardiograms: Which method is best? Journal of Electrocardiology,
48(2), 190–193.
Article
Google Scholar
Genders, T., Spronk, S., Stijnen, T., & Steyerberg, E. W. (2012). Methods for calculating sensitivity and specificity of clustered data: A tutorial. Radiology,
265, 910–916.
Article
Google Scholar
Guglin, M. E., & Thatai, D. (2006). Common errors in computer electrocardiogram interpretation. International Journal of Cardiology,
106(2), 232–237.
Article
Google Scholar
Hartman, N. D., Wheaton, N. B., Williamson, K., Quattromani, E. N., Branzetti, J. B., & Aldeen, A. Z. (2016). A novel tool for assessment of emergency medicine resident skill in determining diagnosis and management for emergent electrocardiograms: A multicenter study. Journal of Emergency Medicine, 51(6), 697–704.
Article
Google Scholar
Hatala, R. M., Brooks, L. R., & Norman, G. R. (2003). Practice makes perfect: the critical role of mixed practice in the acquisition of ECG interpretation skills. Advances in Health Sciences Education: Theory and Practice,
8(1), 17–26.
Article
Google Scholar
Jablonover, R. S., Lundberg, E., Zhang, Y., & Stagnaro-Green, A. (2014). Competency in electrocardiogram interpretation among graduating medical students. Teaching and Learning in Medicine,
26(3), 279–284.
Article
Google Scholar
Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement,
50(1), 1–73.
Article
Google Scholar
Larsen, D. P., Butler, A. C., & Roediger, H. L., III. (2008). Test-enhanced learning in medical education. Medical Education,
42(10), 959–966.
Article
Google Scholar
Livingston, S. A., & Lewis, C. (1995). Estimating the consistency and accuracy of classifications based on test scores. Journal of Educational Measurement,
32, 179–197.
Article
Google Scholar
Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 13–103). New York: American Council on Education: Macmillan Publishing Company.
Google Scholar
Pecaric, M., Boutis, K., Beckstead, J., & Pusic, M. (2017). A big data and learning analytics approach to process-level feedback in cognitive simulations. Academic Medicine,
92(2), 175–184.
Article
Google Scholar
Pusic, M. V., Andrews, J. S., Kessler, D. O., Teng, D. C., Pecaric, M. R., Ruzal-Shapiro, C., et al. (2012a). Prevalence of abnormal cases in an image bank affects the learning of radiograph interpretation. Medical Education,
46(3), 289–298.
Article
Google Scholar
Pusic, M. V., Boutis, K., Hatala, R., & Cook, D. A. (2015a). Learning curves in health professions education. Academic Medicine,
90(8), 1034–1042.
Article
Google Scholar
Pusic, M. V., Boutis, K., Pecaric, M. R., Savenkov, O., Beckstead, J. W., & Jaber, M. Y. (2016). A primer on the statistical modeling of learning curves in health professions education. Advances in Health Sciences Education,
22(3), 741–759.
Article
Google Scholar
Pusic, M. V., Chiaramonte, R., Gladding, S., Andrews, J. S., Pecaric, M. R., & Boutis, K. (2015b). Accuracy of self-monitoring during learning of radiograph interpretation. Medical Education,
49(8), 838–846.
Article
Google Scholar
Pusic, M. V., Kessler, D., Szyld, D., Kalet, A., Pecaric, M., & Boutis, K. (2012b). Experience curves as an organizing framework for deliberate practice in emergency medicine learning. Academic Emergency Medicine,
19(12), 1476–1480.
Article
Google Scholar
Pusic, M., Pecaric, M., & Boutis, K. (2011). How much practice is enough? Using learning curves to assess the deliberate practice of radiograph interpretation. Academic Medicine,
86(6), 731–736.
Article
Google Scholar
Ramsay, C. R., Grant, A. M., Wallace, S. A., Garthwaite, P. H., Monk, A. F., & Russell, I. T. (2001). Statistical assessment of the learning curves of health technologies. Health Technology Assessment (Winchester, England),
5(12), 1–79.
Google Scholar
Rourke, L., Leong, J., & Chatterly, P. (2018). Conditions-based learning theory as a framework for comparative-effectiveness reviews: A worked example. Teaching and Learning in Medicine,
16, 1–9.
Google Scholar
Salerno, S. M., Alguire, P. C., & Waxman, H. S. (2003a). Competency in interpretation of 12-lead electrocardiograms: A summary and appraisal of published evidence. Annals of Internal Medicine,
138(9), 751–760.
Article
Google Scholar
Salerno, S. M., Alguire, P. C., & Waxman, H. S. (2003b). Training and competency evaluation for interpretation of 12-lead electrocardiograms: Recommendations from the American College of Physicians. Annals of Internal Medicine,
138, 747–750.
Article
Google Scholar
Schuwirth, L. W. T., & van der Vleuten, C. P. M. (2011a). General overview of the theories used in assessment: AMEE Guide No. 57. Medical Teacher,
33(10), 783–797.
Article
Google Scholar
Schuwirth, L. W. T., & van der Vleuten, C. P. M. (2011b). Programmatic assessment: From assessment of learning to assessment for learning. Medical Teacher,
33(6), 478–485.
Article
Google Scholar
Shah, A. P., & Rubin, S. A. (2007). Errors in the computerized electrocardiogram interpretation of cardiac rhythm. Journal of Electrocardiology,
40(5), 385–390.
Article
Google Scholar
Shute, V. (2008). Focus on formative feedback. Review of Educational Research,
78(1), 153–189.
Article
Google Scholar
Sibbald, M., Davies, E. G., Dorian, P., & Yu, E. H. C. (2014). Electrocardiographic interpretation skills of cardiology residents: Are they competent? Canadian Journal of Cardiology,
30(12), 1721–1724.
Article
Google Scholar
Wainer, H., & Mislevy, R. J. (2000). Item response theory, item calibration, and proficiency estimation. In H. Wainer (Ed.), Computerized adaptive testing (pp. 63–68). New Jersey: Lawrence Erlbaum & Associates.
Chapter
Google Scholar
Webb, N. M., Shavelson, R. J., & Haertel, E. H. (2006). Reliability coefficients and generalizability theory. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (pp. 81–124). Amsterdam: Elsevier.
Google Scholar