Advances in Health Sciences Education

, Volume 23, Issue 3, pp 455–463 | Cite as

Multiple true–false items: a comparison of scoring algorithms

  • Felicitas-Maria LahnerEmail author
  • Andrea Carolin Lörwald
  • Daniel Bauer
  • Zineb Miriam Nouns
  • René Krebs
  • Sissel Guttormsen
  • Martin R. Fischer
  • Sören Huwendiek


Multiple true–false (MTF) items are a widely used supplement to the commonly used single-best answer (Type A) multiple choice format. However, an optimal scoring algorithm for MTF items has not yet been established, as existing studies yielded conflicting results. Therefore, this study analyzes two questions: What is the optimal scoring algorithm for MTF items regarding reliability, difficulty index and item discrimination? How do the psychometric characteristics of different scoring algorithms compare to those of Type A questions used in the same exams? We used data from 37 medical exams conducted in 2015 (998 MTF and 2163 Type A items overall). Using repeated measures analyses of variance (rANOVA), we compared reliability, difficulty and item discrimination of different scoring algorithms for MTF with four answer options and Type A. Scoring algorithms for MTF were dichotomous scoring (DS) and two partial credit scoring algorithms, PS50 where examinees receive half a point if more than half of true/false ratings were marked correctly and one point if all were marked correctly, and PS1/n where examinees receive a quarter of a point for every correct true/false rating. The two partial scoring algorithms showed significantly higher reliabilities (αPS1/n = 0.75; αPS50 = 0.75; αDS = 0.70, αA = 0.72), which corresponds to fewer items needed for a reliability of 0.8 (nPS1/n = 74; nPS50 = 75; nDS = 103, nA = 87), and higher discrimination indices (rPS1/n = 0.33; rPS50 = 0.33; rDS = 0.30; rA = 0.28) than dichotomous scoring and Type A. Items scored with DS tend to be difficult (pDS = 0.50), whereas items scored with PS1/n become easy (pPS1/n = 0.82). PS50 and Type A cover the whole range, from easy to difficult items (pPS50 = 0.66; pA = 0.73). Partial credit scoring leads to better psychometric results than dichotomous scoring. PS50 covers the range from easy to difficult items better than PS1/n. Therefore, for scoring MTF, we suggest using PS50.


Assessment Medical education Multiple choice Multiple true–false Scoring Undergraduates 



The authors thank the examination board of the Swiss Federal Licensing Examination as well as the two Swiss medical schools for providing the data from the included exams. The authors wish to express their gratitude to the editor for the helpful guidance during the review process.


  1. Albanese, M. A., & Sabers, D. L. (1988). Multiple true–false items: A study of interitem correlations, scoring alternatives, and reliability estimation. Journal of Educational Measurement, 25(2), 111–123.CrossRefGoogle Scholar
  2. Baldiga, K. (2013). Gender differences in willingness to guess. Management Science, 60(2), 434–448.CrossRefGoogle Scholar
  3. Bauer, D., Holzer, M., Kopp, V., & Fischer, M. R. (2011). Pick-N multiple choice-exams: A comparison of scoring algorithms. Advances in Health Sciences Education, 16(2), 211–221.CrossRefGoogle Scholar
  4. Case, S. M., & Swanson, D. B. (2002). Constructing written test questions for the basic and clinical sciences (3rd ed.). Philadelphia, PA: National Board of Medical Examiners.Google Scholar
  5. Cook, D. A., Brydges, R., Ginsburg, S., & Hatala, R. (2015). A contemporary approach to validity arguments: A practical guide to Kane’s framework. Medical Education, 49(6), 560–575. Scholar
  6. Cronbach, L. (1939). Note on the multiple true–false test exercise. Journal of Educational Psychology, 30(8), 628.CrossRefGoogle Scholar
  7. Cronbach, L. (1941). An experimental comparison of the multiple true–false and multiple multiple-choice tests. Journal of Educational Psychology, 32(7), 533.CrossRefGoogle Scholar
  8. Downing, S. M., & Yudkowsky, R. (2009). Assessment in health professions education. New York: Routledge.Google Scholar
  9. Dudley, A. (2006). Multiple dichotomous-scored items in second language testing: Investigating the multiple true–false item type under norm-referenced conditions. Language Testing, 23(2), 198–228.CrossRefGoogle Scholar
  10. Dunham, M. L. (2006). An investigation of the multiple true–false item for nursing licensure and potential sources of construct-irrelevant difficulty. ProQuest.Google Scholar
  11. Frisbie, D. A., & Sweeney, D. C. (1982). The relative merits of multiple true–false achievement tests. Journal of Educational Measurement, 19(1), 29–35. Scholar
  12. Gross, L. J. (1982). Scoring multiple true/false tests some considerations. Evaluation and the Health Professions, 5(4), 459–468.CrossRefGoogle Scholar
  13. Guttormsen, S., Beyeler, C., Bonvin, R., Feller, S., Schirlo, C., Schnabel, K., et al. (2013). The new licencing examination for human medicine: From concept to implementation. Swiss Medical Weekly, 143, w13897. Scholar
  14. Haladyna, T. M., Downing, S. M., & Rodriguez, M. C. (2002). A review of multiple-choice item-writing guidelines for classroom assessment. Applied Measurement in Education, 15(3), 309–333.CrossRefGoogle Scholar
  15. Itten, S., & Krebs, R. (1997). Messqualität der verschiedenen MC-Itemtypen in den beiden Vorprüfungen des Medizinstudiums an der Universität Bern 1997/2 (Forschungsbericht Institut für Aus-, Weiter-und Fortbildung (IAWF) der medizinischen Fakultät der Universität Bern). Bern: IAWF.Google Scholar
  16. Javid, L. (2014). The comparison between multiple-choice (MC) and multiple true–false (MTF) test formats in iranian intermediate EFL learners’ vocabulary learning. Procedia-Social and Behavioral Sciences, 98, 784–788.CrossRefGoogle Scholar
  17. Krebs, R. (1997). The swiss way to score multiple true–false items: theoretical and empirical evidence. In A. J. J. A. Scherpbier, C. P. M. van der Vleuten, J. J. Rethans, & A. F. W. van der Steeg (Eds.), Advances in medical education (pp. 158–161). Netherlands: Springer.CrossRefGoogle Scholar
  18. Krebs, R. (2004). Anleitung zur Herstellung von MC-Fragen und MC-Prüfungen für die ärztliche Ausbildung. Bern: Institut für Medizinische Lehre IML, Abteilung für Ausbildungs-und Examensforschung AAE.Google Scholar
  19. Kreiter, C. D., & Frisbie, D. A. (1989). Effectiveness of multiple true–false items. Applied Measurement in Education, 2(3), 207–216.CrossRefGoogle Scholar
  20. Mobalegh, A., & Barati, H. (2012). Multiple true–false (MTF) and multiple-choice (MC) test formats: A comparison between two versions of the same test paper of Iranian NUEE. Journal of Language Teaching and Research, 3(5), 1027–1037.CrossRefGoogle Scholar
  21. Muchinsky, P. M. (1996). The correction for attenuation. Educational and Psychological Measurement, 56(1), 63–75.CrossRefGoogle Scholar
  22. Norman, G. R., Swanson, D. B., & Case, S. M. (1996). Conceptual and methodological issues in studies comparing assessment formats. Teaching and Learning in Medicine: An International Journal, 8(4), 208–216.CrossRefGoogle Scholar
  23. R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from
  24. Ravesloot, C., Van der Schaaf, M., Muijtjens, A., Haaring, C., Kruitwagen, C., Beek, F., et al. (2015). The don’t know option in progress testing. Advances in Health Sciences Education, 20(5), 1325–1338.CrossRefGoogle Scholar
  25. Richardson, R. (1992). The multiple choice true/false question: What does it measure and what could it measure? Medical Teacher, 14(2–3), 201–204.CrossRefGoogle Scholar
  26. Romano, J. L., Kromrey, J. D., & Hibbard, S. T. (2010). A Monte Carlo study of eight confidence interval methods for coefficient alpha. Educational and Psychological Measurement, 70, 376–393.CrossRefGoogle Scholar
  27. Siddiqui, N. I., Bhavsar, V. H., Bhavsar, A. V., & Bose, S. (2016). Contemplation on marking scheme for Type X multiple choice questions, and an illustration of a practically applicable scheme. Indian Journal of Pharmacology, 48(2), 114.CrossRefGoogle Scholar
  28. Tarasowa, D., & Auer, S. (2013). Balanced scoring method for multiple-mark questions. Paper presented at the CSEDU.Google Scholar
  29. Tsai, F.-J., & Suen, H. K. (1993). A brief report on a comparison of six scoring methods for multiple true–false items. Educational and Psychological Measurement, 53(2), 399–404.CrossRefGoogle Scholar
  30. Verbić, S. (2012). Information value of multiple response questions. Psihologija, 45(4), 467–485.CrossRefGoogle Scholar
  31. Wu, B. C. (2003). Scoring multiple true false items: A comparison of summed scores and response pattern scores at item and test levels. Retrieved from Eric:

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Assessment and Evaluation (AAE), Institute of Medical EducationUniversity of BernBernSwitzerland
  2. 2.Department of Education and Media, Institute of Medical EducationUniversity of BernBernSwitzerland
  3. 3.Institute of Medical EducationUniversity of BernBernSwitzerland
  4. 4.Institute for Medical EducationUniversity Hospital, LMUMunichGermany

Personalised recommendations