Skip to main content
Log in

Towards an Internet of Agents model based on Linked Open Data approach

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

The Internet of Agents (IoA) is a current approach to the Future Internet that has arisen as an alternative to mitigate the limitations of the Internet of Things (IoT) concerning autonomy, reasoning and social capabilities. The aim of this paper is to present a novel architectural model governed by semantic contracts, published as linked data which describe the main aspects regarding the IoA domain, such as context, social circles, services ecosystems, IoT resources, and real-time restrictions. This proposal introduces some mechanisms such as (i) Linked Open Agents (LOAs) as the main unit of process for coordinating and managing IoT-objects, (ii) Linked Agent Contracts (LACs) as contractual semantic descriptions of entities of IoA ecosystems, (iii) an ontology named IoA-OWL that covers the current main aspects related to the IoA, (iv) a Reference Architecture for the IoA approach driven by LOAs and LACs, and (v) a mechanism for agent-discovery based on semantic descriptors. Both the model and its mechanisms are integrated, in order to improve the semantic interoperability and intelligence in heterogeneous IoT networks controlled by Multi-Agent Systems. Finally, a case study is proposed for a scenario of Ambient Intelligence as a working example of the novel architectural model. In addition, a qualitative and quantitative evaluation is then performed to analyze the applicability, performance, functionality of our proposal. A better performance was obtained for the agent discovery process with our architecture in contrast to JADE Yellow Pages and the Java implementation of the Universal Description, Discovery, and Integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAA:

Authentication, Authorization and Accounting

ACL:

Agent Communication Language

AmI:

Ambient Intelligence

BDI:

Belief, Desire, Intention

DbC:

Design by Contract

DOHA:

Dynamic Open Home-Automation

DPWS:

Devices Profile for Web Services

FIPA:

Foundation for Intelligent Physical Agents

IoA:

Internet of Agents

IoS:

Internet of Services

IoT:

Internet of Things

IRI:

Internationalized Resource Identifier

JADE:

Java Agent Development Framework

JSON:

JavaScript Object Notation

JSON-LD:

JavaScript Object Notation for Linked Data

jUDDI:

Java implementation of the Universal Description, Discovery, and Integration

LAC:

Linked Agent Contract

LOA:

Linked Open Agent

LOD:

Linked Open Data

MAS:

Multi-Agent System

OWL:

Web Ontology Language

REST:

Representational State Transfer

RDF:

Resource Description Framework

SOA:

Service-Oriented Architecture

SOAP:

Simple Object Access Protocol

SPARQL:

SPARQL Protocol and RDF Query Language

URI:

Uniform Resource Identifier

UUID:

Universally Unique Identifier

WAC:

Workflow for Agent Contract

XML:

Extensible Markup Language

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.

    Article  Google Scholar 

  2. Al-Sakran, H. O. (2015). Intelligent traffic information system based on integration of internet of things and agent technology. International Journal of Advanced Computer Science and Applications (IJACSA), 6(2), 37–43.

    Google Scholar 

  3. Alegre, U., Augusto, J. C., & Clark, T. (2016). Engineering context-aware systems and applications: A survey. Journal of Systems and Software, 117, 55–83.

    Article  Google Scholar 

  4. Andrade, F., Novais, P., Machado, J., & Neves, J. (2007). Intelligent contracting: Software agents, corporate bodies and virtual organizations. In L. M. Camarinha-Matos, H. Afsarmanesh, P. Novais, & C. Analide (Eds.), Establishing the foundation of collaborative networks. PRO-VE 2007. IFIPThe International Federation for Information Processing (pp. 217–224). New York: Springer.

  5. Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  MATH  Google Scholar 

  6. Atzori, L., Iera, A., & Morabito, G. (2011). SIoT: Giving a social structure to the internet of things. IEEE Communication Letters, 15(11), 1193–1195.

    Article  Google Scholar 

  7. Ayala, I., Amor, M., & Fuentes, L. (2015). The Sol agent platform: Enabling group communication and interoperability of self-configuring agents in the Internet of Things. Journal of Ambient Intelligence and Smart Environments, 7, 243–269.

    Google Scholar 

  8. Bellifemine, F., Caire, G., Poggi, A., & Rimassa, G. (2008). JADE: A software framework for developing multi-agent applications. Lessons learned. Information and Software Technology, 50, 10–21.

    Article  Google Scholar 

  9. Bergenti, F., Iotti, E., & Poggi, A. (2015). Outline of a formalization of JADE multi-agent systems. Intelligenza Artificiale, 9(2), 149–161. https://doi.org/10.3233/IA-150085.

    Article  Google Scholar 

  10. Bhaskaran, N., Shekhar, J., & Wilfred, G. (2013). Mobile Agent Frame (MAF) based Internet of Things (IoT) system for allowing diverse heterogeneous devices to coexist, has MAF that is running on every device that can host static and mobile agents and receive mobile programs and messages. Patent IN201200674-I2.

  11. Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data: The story so far. International Journal on Semantic Web and Information Systems, 5(3), 1–22. https://doi.org/10.4018/jswis.2009081901.

    Article  Google Scholar 

  12. Bosse, S. (2016). Mobile Multi-agent systems for the Internet-of-Things and clouds using the JavaScript agent machine platform and machine learning as a service. In 2016 IEEE 4th international conference on future internet of things and cloud (FiCloud) (pp. 244–253).

  13. Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.

    Article  Google Scholar 

  14. Braubach, L., Pokahr, A., & Lamersdorf, W. (2004). Jadex: A short overview. https://vsis-www.informatik.uni-hamburg.de/getDoc.php/publications/212/jadex_node.pdf. Accessed November 14, 2016.

  15. Brazier, F., Oskamp, A., Schellekens, M., & Wijngaards, N. (2003). Can agents close contracts? https://pdfs.semanticscholar.org/bcf0/da4a0eabb55c8d5a4f865df6740d56ab0a19.pdf. Accessed December 14, 2016.

  16. Brickley, D., & Miller, L. (2014). FOAF vocabulary specification 0.99. http://xmlns.com/foaf/spec/. Accessed December 14, 2016.

  17. Cabri, G., Domnori, E., & Orlandini, D. (2011). Implementing agent interoperability between language-heterogeneous platforms. In 20th IEEE international workshops on enabling technologies (pp. 29–34). Infrastructure for Collaborative Enterprises (WETICE).

  18. Carlier, F., & Renault, V. (2016). IoT-a, Embedded agents for smart internet of things. Application on a display wall. In IEEE/WIC/ACM international conference on Web Intelligence Workshops (WIW) (pp. 80–83).

  19. Chelmis, C., & Prasanna, V. K. (2011). Social networking analysis: A state of the art and the effect of semantics. In IEEE third international conference on social computing (SocialCom) (pp. 531–536).

  20. Chen, H. (2004). Context broker architecture: An intelligent broker for context-aware systems in smart spaces. http://daml.umbc.edu/ontologies/cobra/0.4/location. Accessed December 14, 2016.

  21. Chenand, H., Finin, T., & Joshi, A. (2005). The SOUPA ontology for pervasive computing. In V. Tamma, S. Cranefield, T. W. Finin, & S. Willmott (Eds.), Ontologies for agents: Theory and experiences. Whitestein series in software agent technologies (pp. 233–258). Basel: Birkhäuser.

  22. CoDAMoS Project. (2003). Context-driven adaptation of mobile services. https://distrinet.cs.kuleuven.be/projects/CoDAMoS/ontology/context.owl. Accessed December 14, 2016.

  23. Cox, S., & Little, C. (2016). Time ontology in OWL. https://www.w3.org/2016/time. Accessed December 14, 2016.

  24. Cucurull, J., Martı, R., Navarro-Arribas, G., Robles, S., & Borrell, J. (2009). Full mobile agent interoperability in an IEEE-FIPA context. Journal of Systems and Software, 82(12), 1927–1940.

    Article  Google Scholar 

  25. Dublin-Core-Metadata-Inititative. (2012). DCMI metadata terms. http://dublincore.org/documents/dcmi-terms/. Accessed December 14, 2016.

  26. Elkhodr, M., Shahrestani, S., & Cheung, H. (2013). A contextual-adaptive location disclosure agent for general devices in the internet of things. In 2013 IEEE 38th conference on local computer networks workshops (pp. 848–855).

  27. Ereteo, G., Gandon, F., & Buffa, M. (2008). INRIA’s IRC ontology as RDF vocabulary. http://ns.inria.fr/semsna/2008/10/13/voc.html. Accessed December 14, 2016.

  28. Erl, T. (2008). SOA principles of service design. New York: Prentice Hall.

    Google Scholar 

  29. Erl, T., Karmarkar, A., Walmsley, P., Haas, H., Yalcinalp, L. U., Liu, K., et al. (2009). Web service contract design and versioning for SOA. New York: Prentice Hall.

    Google Scholar 

  30. Fortino, G. (2016). Agents meet the IoT: Toward ecosystems of networked smart objects. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 43–47.

    Article  Google Scholar 

  31. Fortino, G., Guerrieri, A., & Russo, W. (2012). Agent-oriented smart objects development. In Proceedings of the 2012 IEEE 16th international conference on computer supported cooperative work in design (CSCWD) (pp. 907–912).

  32. Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on Contracts. In J. Pokorny, V. Repa, K. Richta, W. Wojtkowski, H. Linger, C. Barry, et al. (Eds.), Information systems development (pp. 243–255). New York: Springer.

    Chapter  Google Scholar 

  33. Gazis, V., Goertz, M., Huber, M., Leonardi, A., Mathioudakis, K., Wiesmaier, A., et al. (2015). Short paper: IoT: Challenges, projects, architectures. In 18th international conference on intelligence in next generation networks (pp. 145–147).

  34. Gazis, V., Görtz, M., Huber, M., Leonardi, A., Mathioudakis, K., Wiesmaier, A., et al. (2015). A survey of technologies for the internet of things. In International wireless communications and mobile computing conference (IWCMC) (pp. 1090–1095).

  35. Gil, D., Ferrández, A., Mora-Mora, H., & Peral, J. (2016). Internet of Things: A review of surveys based on context aware intelligent services. Sensors, 16(7), 1069. https://doi.org/10.3390/s16071069.

    Article  Google Scholar 

  36. Godfrey, W. W., Jha, S. S., & Nair, S. B. (2013). On a mobile agent framework for an internet of things. In 2013 international conference on communication systems and network technologies (CSNT) (pp. 345–350).

  37. Grimstrup, A., Gray, R., Kotz, D., Breedy, M., Carvalho, M., Cowin, T., et al. (2002). Toward interoperability of mobile-agent systems. In N. Suri (Ed.), Mobile agents. MA 2002. Lecture notes in computer science (Vol. 2535, pp. 106–120). Berlin, Heidelberg: Springer.

  38. Grosof, B. N., & Poon, T. C. (2004). SweetDeal: Representing agent contracts with exceptions using XML rules, ontologies, and process descriptions. International Journal of Electronic Commerce, 8(4), 340–349. https://doi.org/10.1080/10864415.2004.11044305.

    Article  Google Scholar 

  39. Gyrard, A., Tarek, E., Agarwal, R., Gomez, D, & Sánchez, L. (2016). The machine-to-machine measurement (M3) lite ontology (m3lite). http://lov.okfn.org/dataset/lov/vocabs/m3lite. Accessed December 14, 2016.

  40. Hachem, S., Teixeira, T., & Issarny, V. (2011). Ontologies for the internet of things. In Proceedings of the 8th middleware doctoral symposium (pp. 1–6). https://doi.org/10.1145/2093190.2093193.

  41. Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space (1st ed.). San Rafael: Morgan & Claypool.

    Google Scholar 

  42. Iannella, R., & McKinney, J. (2014). vCard ontology: For describing people and organizations. https://www.w3.org/TR/vcard-rdf/. Accessed December 14, 2016.

  43. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., et al. (2011). Service-oriented middleware for the Future Internet: State of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45.

    Article  Google Scholar 

  44. Jarvenpaa, L., Lintinen, M., Mattila, A.-L., Mikkonen, T., Systa, K., & Voutilainen, J.-P. (2013). Mobile agents for the internet of things System Theory. In 2013 17th international conference on control and computing (ICSTCC) (pp. 763–767).

  45. Kaminski, N. J., Murphy, M., & Marchetti, N. (2016). Agent-based modeling of an IoT network. In 2016 IEEE international symposium on systems engineering (ISSE) (pp. 1–7).

  46. Kato, T., Takahashi, H., & Kinoshita, T. (2017). Multiagent-based autonomic and resilient service provisioning architecture for the Internet of Things. International Journal of Computer Science and Network Security, 17(6), 36–58.

    Google Scholar 

  47. Katsaros, D., Dimokas, N., & Tassiulas, L. (2010). Social network analysis concepts in the design of wireless ad hoc network protocols. IEEE Network, 24(6), 23–29.

    Article  Google Scholar 

  48. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, proof possible applications and key challenges. In 10th international conference on frontiers of information technology (pp. 257–260). https://doi.org/10.1109/FIT.2012.53.

  49. Knol, M., van Voorst, K., Telgen, D., van der Paauw, R., van den Berg, M., Puik, E., et al. (2016). Internet of smart things, a study on embedding agents and information as a service. ICAART Proceedings, 1, 102–109.

    Google Scholar 

  50. Korn, N., & Oppenheim, C. (2011). Licensing open data: A practical guide, higher education funding council for England. http://discovery.ac.uk/files/pdf/Licensing_Open_Data_A_Practical_Guide.pdf. Accessed February 21, 2017.

  51. Kravari, K., & Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies and Social Simulation. https://doi.org/10.18564/jasss.2661.

  52. Laclavik, M., Balogh, Z., Babik, M., & Hluchy, L. (2006). AgentOWL: Semantic knowledge model and agent architecture. Computing and Informatics, 25(5), 421–439.

    MATH  Google Scholar 

  53. Laufer, C., & Schwabe, D. (2007). Semantic contract support for E-business processes. In Web congress, Latin American (pp. 67–75). http://doi.ieeecomputersociety.org/10.1109/.

  54. Lee, J., Lee, S.-J., & Wang, P.-F. (2015). A framework for composing SOAP, non-SOAP and non-web services. IEEE Transactions on Services Computing, 8(2), 240–250.

    Article  Google Scholar 

  55. Leong, P., & Lu, L. (2014). Multiagent web for the Internet of Things. In 2014 international conference on information science and applications (ICISA) (pp. 1–4).

  56. Leppänen, T., Riekki, J., Liu, M., Harjula, E., & Ojala, T. (2014). Mobile agents-based smart objects for the internet of things. In G. Fortino & P. Trunfio (Eds.), Internet of things based on smart objects. Internet of things (technology, communications and computing) (pp. 29–48). Cham: Springer.

  57. Li, S., Da Xu, L., & Zhao, S. (2015). The Internet of Things: A survey. Information Systems Frontiers, 17, 243–259.

    Article  Google Scholar 

  58. Lin, C.-H., Ho, P.-H., & Lin, H.-C. (2014). Framework for NFC-based intelligent agents: a context-awareness enabler for social internet of things. International Journal of Distributed Sensor Networks, 10, 978951.

    Article  Google Scholar 

  59. Liu, C.-H., & Chen, J.-Y. (2012). Using ontology-based BDI agent to dynamically customize workflow and bind semantic web service. Journal of Software, 7(4), 884–894.

    Google Scholar 

  60. Manate, B., Fortis, T.-F., & Negru, V. (2014) Infrastructure management support in a multi-agent architecture for Internet of Things. In 2014 European modelling symposium (EMS) (pp. 372–377).

  61. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., et al. (2004). OWL-S: Semantic markup for web services. https://www.w3.org/Submission/OWL-S/. Accessed December 14, 2016.

  62. Meyer, B. (1992). Applying “design by contracts”. Computer, 25(10), 40–51.

    Article  Google Scholar 

  63. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of Things: Vision, applications and research challenges ad hoc networks. Ad Hoc Networks, 10(7), 1497–1516.

    Article  Google Scholar 

  64. Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., et al. (2015). From the Internet of Things to the internet of people. IEEE Internet Computing, 19(2), 40–47.

    Article  Google Scholar 

  65. Mzahm, A. M., Ahmad, M. S., Tang, A. Y., & Ahmad, A. (2016). Towards a design model for things in agents of things. In Proceedings of the international conference on internet of things and cloud computing (pp. 1–41).

  66. Mzahm, A. M., Ahmad, M. S., & Tang, A. Y. (2014). Computing hardware analysis for agents of things (AoT). In Proceedings of the 6th international conference on information technology and multimedia (pp. 223–228).

  67. Mzahm, A. M., Ahmad, M. S., & Tang A. Y. C. (2013). Agents of Things (AoT): An intelligent operational concept of the Internet of Things (IoT). In 13th international conference on intelligent systems design and applications (ISDA13) (pp. 159–164).

  68. Nieves, J. C., Andrade, D., & Guerrero, E. (2017). MAIoT-an IoT architecture with reasoning and dialogue capability. In E. Sucar, O. Mayora, & E. Munoz de Cote (Eds.), Applications for future internet. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 109–113). Cham: Springer.

  69. Ozkaya, M., & Kloukinas, C. (2013). Towards design-by-contract based software architecture design. In 2013 IEEE 12th international conference on intelligent software methodologies, tools and techniques (SoMeT) (pp. 157–164).

  70. Pack, S., Baek, S., Kwon, T., & Choi, Y. (2008). Authentication, authorization, and accounting (AAA) framework in network mobility (NEMO) environments. In Handbook of research on wireless security (pp. 395–411). https://doi.org/10.4018/978-1-59904-899-4.ch025.

  71. Pai, F.-P., Hsu, I.-C., & Chung, Y.-C. (2016). Semantic web technology for agent interoperability: A proposed infrastructure. Applied Intelligence, 44(1), 1–16.

    Article  Google Scholar 

  72. Paz, J., Castillo, A., & González, R. (2014). An evaluation of integration technologies to expose agent actions as web services. In Z. Wen & T. Li (Eds.), Practical applications of intelligent systems. Advances in intelligent systems and computing (pp. 259–270). Berlin, Heidelberg: Springer.

  73. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the Internet of Things: A survey. IEEE Communications Surveys and Tutorials, 16(1), 414–454.

    Article  Google Scholar 

  74. Pico-Valencia, P., & Holgado-Terriza J. A. (2016). Semantic agent contracts for internet of agents. In IEEE/WIC/ACM international conference on Web Intelligence Workshops (WIW) (pp. 76–79).

  75. Pico-Valencia, P. A., & Holgado-Terriza, J. A. (2016). An agent middleware for supporting ecosystems of heterogeneous web services. Procedia Computer Science, 94, 121–128.

    Article  Google Scholar 

  76. Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., et al. (2004). Towards an extensible context ontology for ambient intelligence. In P. Markopoulos, B. Eggen, E. Aarts, & J. L. Crowley (Eds.), Ambient intelligence. EUSAI 2004. Lecture notes in computer science (pp. 148–159). Berlin, Heidelberg: Springer.

  77. Price, R., Krishnaswamy, S., Loke, S. W., & Chhetri, M. B. (2004). Towards an ontology for agent mobility. In S. Wang, K. Tanaka, S. Zhou, T. W. Ling, J. Guan, D. Yang, et al. (Eds.), Conceptual modeling for advanced application domains. ER 2004. Lecture notes in computer science (pp. 484–495). Berlin, Heidelberg; Springer.

  78. Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: A survey. IEEE Internet of Things Journal, 3(1), 70–95.

    Article  Google Scholar 

  79. Rodriguez-Castro, B., Torok, L., & Hepp, M. (2016) Computer vocabulary language reference. http://www.ebusiness-unibw.org/ontologies/opdm/computer.html. Accessed December 14, 2016.

  80. Rodriguez-Valenzuela, S., Holgado-Terriza, J. A., Gutierrez-Guerrero, J. M., & Muros-Cobos, J. (2014). Distributed service-based approach for sensor data fusion in IoT environments. Sensors, 14(10), 19200–19228.

    Article  Google Scholar 

  81. Russel, S., & Norvig, P. (2003). Artificial intelligence: A modern approach. New York: Prentice Hall.

    Google Scholar 

  82. Soriano, J., Heitz, C., Hutter, H. P., Fernández, R., Hierro, J. J., & Vogel, J., et al. (2013). Internet of services. In E. Bertin, N. Crespi, & T. Magedanz (Eds.), Evolution of telecommunication services. Lecture notes in computer science (pp. 283–325). Berlin, Heidelberg: Springer.

  83. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., & Lindström N. (2017). JSON-LD 1.1 A JSON-based serialization for linked data. http://json-ld.org/spec/latest/json-ld/. Accessed January 23, 2017.

  84. Sturm, A., & Shehory, O. (2014). Agent-oriented software engineering. Reflections on architectures, methodologies, languages, and frameworks. Berlin: Springer.

    Google Scholar 

  85. The Apache Software Foundation. (2014). jUDDI Project: An open source implementation of OASIS’s UDDI v3 specification. https://juddi.apache.org/. Accessed December 20, 2017.

  86. Thomas, R., & Taylor, R. (2000). Architectural styles and the design of network-based software architectures. https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. Accessed December 14, 2016.

  87. Tran, H. T., Baraki, H., & Geihs, K. (2015). An approach towards a service co-evolution in the Internet of Things. In R. Giaffreda, R. Vieriu, E. Pasher, G. Bendersky, A. Jara, J. Rodrigues, et al. (Eds.), Internet of Things. User-centric IoT. IoT360 2014. Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp. 273–280). Cham: Springer.

  88. Vresk, T., & Cavrak, I. (2016). Architecture of an interoperable IoT platform based on microservices. In 39th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1196–1201).

  89. Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things: A survey of topics and trends. Information Systems Frontiers, 17, 261–274.

    Article  Google Scholar 

  90. Xia, F., Liu, L., Li, J., Ma, J., & Vasilakos, A. V. (2015). Socially aware networking: A survey. IEEE Systems Journal, 9(3), 904–921.

    Article  Google Scholar 

  91. Xu, X., Bessis, N., & Cao, J. (2013). An autonomic agent trust model for IoT systems. Procedia Computer Science, 21, 107–113.

    Article  Google Scholar 

  92. Xu, D., Fang, B., & Li, H. (2016). An abstract communication service interface of DPWS on embedded device. In 2016 Chinese control and decision conference (CCDC) (pp. 4695–4699).

  93. Yu, H., Shen, Z., & Leung, C. (2013). From Internet of Things to Internet of Agents. In 2013 IEEE international conference on green computing and communications and IEEE Internet of Things and IEEE cyber, physical and social computing (pp. 1054–1057).

  94. Yurur, O., Liu, C. H., Sheng, Z., Leung, V. C., Moreno, W., & Leung, K. K. (2014). Context-awareness for mobile sensing: A survey and future directions. IEEE Communications Surveys and Tutorials, 18(1), 68–93.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ecuadorian Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) through the Program of Ph.D. for university professors. In addition, the authors thank the Center for Research in Information and Communication Technologies of the University of Granada (CITIC-UGR). Finally, the authors would also like to thank the referee for a careful reading of the paper and some valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Holgado-Terriza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pico-Valencia, P., Holgado-Terriza, J.A. & Senso, J.A. Towards an Internet of Agents model based on Linked Open Data approach. Auton Agent Multi-Agent Syst 33, 84–131 (2019). https://doi.org/10.1007/s10458-018-9399-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-018-9399-7

Keywords

Navigation