Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 32, Issue 4, pp 534–567 | Cite as

Investigating the characteristics of one-sided matching mechanisms under various preferences and risk attitudes

  • Hadi HosseiniEmail author
  • Kate Larson
  • Robin Cohen
Article

Abstract

One-sided matching mechanisms are fundamental for assigning a set of indivisible objects to a set of self-interested agents when monetary transfers are not allowed. Two widely-studied randomized mechanisms in multiagent settings are the Random Serial Dictatorship (RSD) and the Probabilistic Serial Rule (PS). Both mechanisms require only that agents specify ordinal preferences and have a number of desirable economic and computational properties. However, the induced outcomes of the mechanisms are often incomparable and thus there are challenges when it comes to deciding which mechanism to adopt in practice. In this paper, we first consider the space of general ordinal preferences and provide empirical results on the (in)comparability of RSD and PS. We analyze their respective economic properties under general and lexicographic preferences. We then instantiate utility functions with the goal of gaining insights on the manipulability, efficiency, and envyfreeness of the mechanisms under different risk-attitude models. Our results hold under various preference distribution models, which further confirm the broad use of RSD in most practical applications.

Keywords

One-sided matching Random Serial Dictatorship Probabilistic Serial Rule Strategyproofness Social welfare Fairness Risky attitudes 

Notes

Acknowledgements

We are grateful for the valuable feedback we received from the anonymous reviewers. This work was partially supported by NSERC.

References

  1. 1.
    Abdulkadiroğlu, A., Pathak, P. A., & Roth, A. E. (2009). Strategy-proofness versus efficiency in matching with indifferences: Redesigning the NYC high school match. The American Economic Review, 99(5), 1954–1978.CrossRefGoogle Scholar
  2. 2.
    Abdulkadiroğlu, A., & Sönmez, T. (1998). Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica, 66(3), 689–701.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abdulkadiroğlu, A., & Sönmez, T. (1999). House allocation with existing tenants. Journal of Economic Theory, 88(2), 233–260.CrossRefzbMATHGoogle Scholar
  4. 4.
    Arrow, K. J. (1971). Essays in the theory of risk-bearing. Markham economics series. North-Holland. https://books.google.com/books?id=vivwAAAAMAAJ.
  5. 5.
    Ashlagi, I., Fischer, F., Kash, I. A., & Procaccia, A. D. (2015). Mix and match: A strategyproof mechanism for multi-hospital kidney exchange. Games and Economic Behavior, 91, 284–296.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aziz, H., Brandt, F., & Brill, M. (2013). The computational complexity of random serial dictatorship. Economics Letters, 121(3), 341–345.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aziz, H., Chen, J., Filos-Ratsikas, A., Mackenzie, S., & Mattei, N. (2015). Egalitarianism of random assignment mechanisms. arXiv preprint, arXiv:1507.06827.
  8. 8.
    Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Narodytska, N., & Walsh, T. (2015). Equilibria under the probabilistic serial rule. In Proceedings of the 24th international conference on artificial intelligence, IJCAI 2015 (pp. 1105–1112). AAAI Press. http://dl.acm.org/citation.cfm?id=2832249.2832402.
  9. 9.
    Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Narodytska, N., & Walsh, T. (2015). Manipulating the probabilistic serial rule. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (AAMAS 2015) (pp. 1451–1459). International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  10. 10.
    Aziz, H., Gaspers, S., Mackenzie, S., & Walsh, T. (2015). Fair assignment of indivisible objects under ordinal preferences. Artificial Intelligence, 227, 71–92.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Berg, S. (1985). Paradox of voting under an urn model: The effect of homogeneity. Public Choice, 47(2), 377–387.CrossRefGoogle Scholar
  12. 12.
    Bhalgat, A., Chakrabarty, D., & Khanna, S. (2011). Social welfare in one-sided matching markets without money. In L. A. Goldberg, K. Jansen, R. Ravi, & J. D. P. Rolim (Eds.), Approximation, randomization, and combinatorial optimization. Algorithms and techniques (pp. 87–98). Berlin: Springer.CrossRefGoogle Scholar
  13. 13.
    Bogomolnaia, A., & Heo, E. J. (2012). Probabilistic assignment of objects: Characterizing the serial rule. Journal of Economic Theory, 147(5), 2072–2082.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem. Journal of Economic Theory, 100(2), 295–328.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bouveret, S., & Lang, J. (2014). Manipulating picking sequences. In Proceedings of the 21st European conference on artificial intelligence (ECAI14) (pp. 141–146). Prague: IOS Press. http://recherche.noiraudes.net/resources/papers/ECAI14.pdf.
  16. 16.
    Budish, E., & Cantillon, E. (2012). The multi-unit assignment problem: Theory and evidence from course allocation at Harvard. The American Economic Review, 102(5), 2237–71.CrossRefGoogle Scholar
  17. 17.
    Che, Y. K., & Kojima, F. (2010). Asymptotic equivalence of probabilistic serial and random priority mechanisms. Econometrica, 78(5), 1625–1672.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Christodoulou, G., Filos-Ratsikas, A., Frederiksen, S. K. S., Goldberg, P. W., Zhang, J., & Zhang, J.(2016). Social welfare in one-sided matching mechanisms. In International conference on autonomous agents and multiagent systems (pp. 30–50). Springer.Google Scholar
  19. 19.
    Domshlak, C., Hüllermeier, E., Kaci, S., & Prade, H. (2011). Preferences in AI: An overview. Artificial Intelligence, 175(7), 1037–1052.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ekici, Ö., & Kesten, O. (2015). An equilibrium analysis of the probabilistic serial mechanism. International Journal of Game Theory, 45, 1–20.  https://doi.org/10.1007/s00182-015-0475-9.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Filos-Ratsikas, A., Frederiksen, S. K. S., & Zhang, J. (2014). Social welfare in one-sided matchings: Random priority and beyond. In R. Lavi (Ed.), Algorithmic game theory (pp. 1–12). Berlin: Springer.Google Scholar
  22. 22.
    Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20(11), 1442–1471.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects. The American Economic Review, 59, 25–34.Google Scholar
  24. 24.
    Hosseini, H., & Larson, K. (2015). Strategyproof quota mechanisms for multiple assignment problems. arXiv preprint, arXiv:1507.07064.
  25. 25.
    Hugh-Jones, D., Kurino, M., & Vanberg, C. (2013). An experimental study on the incentives of the probabilistic serial mechanism. Technical report, Discussion Paper, Social Science Research Center Berlin (WZB), Research Area Markets and Politics, Research Unit Market Behavior.Google Scholar
  26. 26.
    Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.CrossRefzbMATHGoogle Scholar
  27. 27.
    Kendall, M. G. (1948). Rank correlation methods. London: Charles Griffin & Co. Ltd.zbMATHGoogle Scholar
  28. 28.
    Kojima, F. (2009). Random assignment of multiple indivisible objects. Mathematical Social Sciences, 57(1), 134–142.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kojima, F., & Manea, M. (2010). Incentives in the probabilistic serial mechanism. Journal of Economic Theory, 145(1), 106–123.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, Q., & Pycia, M. (2013). Ordinal efficiency, fairness, and incentives in large markets. (Unpublished mimeo).Google Scholar
  31. 31.
    Lu, T., & Boutilier, C. (2011). Learning mallows models with pairwise preferences. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 145–152).Google Scholar
  32. 32.
    Lu, T., & Boutilier, C. (2011). Robust approximation and incremental elicitation in voting protocols. In Proceedings of the 22nd international joint conference on artificial intelligence, IJCAI 2011 (Vol. 1, pp. 287–293).Google Scholar
  33. 33.
    Mallows, C. L. (1957). Non-null ranking models. Biometrika, 44(1/2), 114–130.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Manea, M. (2009). Asymptotic ordinal inefficiency of random serial dictatorship. Theoretical Economics, 4(2), 165–197.Google Scholar
  35. 35.
    Manlove, D. (2013). Algorithmics of matching under preferences. Singapore: World Scientific Publishing.CrossRefzbMATHGoogle Scholar
  36. 36.
    Marden, J. I. (1996). Analyzing and modeling rank data., CRC monographs on statistics & applied probability London: Chapman & Hall.zbMATHGoogle Scholar
  37. 37.
    Mattei, N., & Walsh, T. (2013). PrefLib: A library of preference data http://preflib.org. In Proceedings of the 3rd international conference on algorithmic decision theory (ADT 2013). Lecture notes in artificial intelligence. Springer.Google Scholar
  38. 38.
    McLennan, A. (2002). Ordinal efficiency and the polyhedral separating hyperplane theorem. Journal of Economic Theory, 105(2), 435–449.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mennle, T., & Seuken, S. (2013). Hybrid mechanisms: Trading off efficiency and strategyproofness in one-sided matching. arXiv preprint.Google Scholar
  40. 40.
    Mennle, T., & Seuken, S. (2013). Hybrid mechanisms: Trading off strategyproofness and efficiency of random assignment mechanisms. arXiv preprint, arXiv:1303.2558.
  41. 41.
    Mennle, T., & Seuken, S. (2015). Partial strategyproofness: An axiomatic approach to relaxing strategyproofness for assignment mechanisms. Technical report, Working paper.Google Scholar
  42. 42.
    Mennle, T., Weiss, M., Philipp, B., & Seuken, S. (2015). The power of local manipulation strategies in assignment mechanisms. In Proceedings of the 24th international conference on artificial intelligence, IJCAI’15 (pp. 82–89). AAAI Press. http://dl.acm.org/citation.cfm?id=2832249.2832261.
  43. 43.
    Pápai, S. (2000). Strategyproof multiple assignment using quotas. Review of Economic Design, 5(1), 91–105.CrossRefGoogle Scholar
  44. 44.
    Pathak, P. A. (2006). Lotteries in student assignment. Harvard University. (Unpublished mimeo).Google Scholar
  45. 45.
    Pathak, P. A., & Sethuraman, J. (2011). Lotteries in student assignment: An equivalence result. Theoretical Economics, 6(1), 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal of Economics, 119(2), 457–488.CrossRefzbMATHGoogle Scholar
  47. 47.
    Saban, D., & Sethuraman, J. (2014). A note on object allocation under lexicographic preferences. Journal of Mathematical Economics, 50, 283–289.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Saban, D., & Sethuraman, J. (2015). The complexity of computing the random priority allocation matrix. Mathematics of Operations Research, 40(4), 1005–1014.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Schulman, L. J., & Vazirani, V. V. (2012). Allocation of divisible goods under lexicographic preferences. arXiv preprint, arXiv:1206.4366.
  50. 50.
    Sönmez, T., & Ünver, M. U. (2010). Course bidding at business schools. International Economic Review, 51(1), 99–123.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Svensson, L. G. (1999). Strategy-proof allocation of indivisible goods. Social Choice and Welfare, 16(4), 557–567.MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the optimal assignment problem. Contributions to the Theory of Games, 2, 5–12.MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceRochester Institute of TechnologyRochesterUSA
  2. 2.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations