Abstract
We overview the most prominent logics of knowledge and action that were proposed and studied in the multiagent systems literature. We classify them according to these two dimensions, knowledge and action, and moreover introduce a distinction between individual knowledge and group knowledge, and between a nonstrategic an a strategic interpretation of action operators. For each of the logics in our classification we highlight problematic properties. They indicate weaknesses in the design of these logics and call into question their suitability to represent knowledge and reason about it. This leads to a list of research challenges.
This is a preview of subscription content, access via your institution.

Notes
The set of agent names cannot be infinite if we want the set of all groups of agents to be enumerable—for example, if \(\mathbb {I}\) were allowed to be the set of natural numbers then the set of subsets of \(\mathbb {I}\) would be uncountable—, and enumerability is necessary to obtain finite axiomatisations. Another way out is to only consider finite subsets of an infinite set of agents. We refer to [48] for non-finite axiomatisations of logics of group knowledge.
We have chosen the notation \({\langle \![ J ]\!\rangle }\)—the nesting of a modal diamond and a modal box—in order to signal a \(\forall \exists \) quantification. It is however not standard in the literature, where one can find \({\langle J \rangle }\) in Pauly’s Coalition Logic \(\mathtt {CL}\) and \({\langle \!\langle J \rangle \!\rangle }\) in Alternating-time Temporal Logic (\(\mathtt {ATL}\)).
We here give a simplified version; the original formulation is not about the above extension \(\mathtt {PDL^{\!\forall }}\) of \(\mathtt {PDL}\), but about logic \(\mathtt {ES}\) [70]. The latter is a variant of the Situation Calculus where situation terms are suppressed (and which is therefore closer to modal logics) and which moreover comes with sensing actions and epistemic operators.
Actually we give an equivalent axiomatisation that better matches the other axiomatisations in this paper: our \(\mathtt {RE({\langle \![ J ]\!\rangle })}\) and \(\mathtt {M({\langle \![ J ]\!\rangle })}\) do not appear in the original presentation, while \({\langle \![ \emptyset ]\!\rangle }\mathsf {G}\top \) and the inference rules \(\frac{\textstyle \varphi }{\textstyle ~ {\langle \![ \emptyset ]\!\rangle } \mathsf {G}\varphi ~}\) and \(\frac{\textstyle \varphi \rightarrow \psi }{\textstyle ~ {\langle \![ \emptyset ]\!\rangle } {\mathsf {X}}\varphi \rightarrow {\langle \![ \emptyset ]\!\rangle } {\mathsf {X}}\psi ~ }\) are missing in ours. The first can be proved from \(\mathtt {N({\langle \![ J ]\!\rangle })}\) via \(\mathtt {RE({\langle \![ J ]\!\rangle })}\) and the Greatest Fixpoint Axiom \(\mathtt {GFP(\mathsf {G})}\). The second can be derived from the first via \(\mathtt {RE({\langle \![ J ]\!\rangle })}\). The third can be derived from \(\mathtt {M({\langle \![ J ]\!\rangle })}\) via \(\mathtt {RE({\langle \![ J ]\!\rangle })}\).
Thanks are due to Nicholas Asher for a confirmation of that point in conversation.
References
Ågotnes, T., Goranko, V., & Jamroga, W. (2007). Alternating-time temporal logics with irrevocable strategies. In: D. Samet (Ed.), Proceedings of the 11th Conference on TARK (pp. 15–24).
Ågotnes, T., Balbiani, P., van Ditmarsch, H. P., & Seban, P. (2010). Group announcement logic. Journal of Applied Logic, 8, 62–81.
Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50, 510–530.
Alechina, N. (2013). Logic and agent programming languages. In L. Libkin, U. Kohlenbach, & R. J. G. B. de Queiroz (Eds.), WoLLIC. Lecture notes in computer science (Vol. 8071, pp. 1–10). Berlin: Springer.
Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49(5), 672–713.
Aucher, G. (2004). A combined system for update logic and belief revision. In M. Barley & N. K. Kasabov (Eds.), PRIMA. Lecture notes in computer science (Vol. 3371, pp. 1–17). Berlin: Springer.
Aucher, G. (2008). Internal models and private multi-agent belief revision. In L. Padgham, D. C. Parkes, J. P. Müller, & S. Parsons (Eds.), Proceedings of the 7th International Joint Conference AAMAS (Vol. 2, pp. 721–727). IFAAMAS.
Aucher, G. (2008). Perspectives on belief and change. PhD thesis, University of Otago and University Paul Sabatier.
Aumann, R. J. (1976). Agreeing to disagree. The Annals of Statistics, 4(6), 1236–1239.
Balbiani, P., Baltag, A., van Ditmarsch, H. P., Herzig, A., Hoshi, T., & de Lima, T. (2008). Knowable’as ‘known after an announcement. Review of Symbolic Logic, 1(3), 305–334.
Balbiani, P., Herzig, A., & Troquard, N. (2008). Alternative axiomatics and complexity of deliberative STIT theories. Journal of Philosophical Logic, 37(4), 387–406.
Balbiani, P., Herzig, A.,&Troquard, N. (2013). Dynamic logic of propositional assignments: A well-behaved variant of PDL. In O. Kupferman (Ed.), Logic in computer science (LICS) (pp. 143–152), June 25–28, 2013. New Orleans, LA: ACM/IEEE. Retrieved from http://www.ieee.org/.
Balbiani, P., van Ditmarsch, H. P., Herzig, A., & de Lima, T. (2012). Some truths are best left unsaid. In T. Bolander, T. Braüner, S. Ghilardi, & L. S. Moss (Eds.), Advances in modal logic (pp. 36–54). London: College Publications.
Baltag, A., & Moss, L. S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.
Baltag, A., & Smets, S. (2009). Group belief dynamics under iterated revision: Fixed points and cycles of joint upgrades. In A. Heifetz (Ed.), Proceedings of the 12th Conference on TARK (pp. 41–50).
Baltag, A., Gierasimczuk, N., & Smets, S. (2011). Belief revision as a truth-tracking process. In K. R. Apt (Ed.), Proceedings of the 13th Conference on TARK (pp. 187–190). ACM.
Baltag, A., Renne, B., & Smets, S. (2014). The logic of justified belief, explicit knowledge, and conclusive evidence. Annals of Pure and Applied Logic, 165(1), 49–81.
Belardinelli, F. (2014). Reasoning about knowledge and strategies: Epistemic strategy logic. In F. Mogavero, A. Murano, & M. Y. Vardi (Eds.) SR, EPTCS (Vol. 146, pp. 27–33).
Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist world. Oxford: Oxford University Press.
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science. Cambridge: Cambridge University Press.
Bonzon, E., Lagasquie-Schiex, M. C., Lang, J., & Zanuttini, B. (2006). Boolean games revisited. In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), ECAI. Frontiers in artificial intelligence and applications (Vol. 141, pp. 265–269). Amsterdam: IOS Press.
Brihaye, T., da Costa Lopes, A., Laroussinie, F., & Markey, N. (2009). ATL with strategy contexts and bounded memory. Proceedings of LFSC’09. LNCS (Vol. 5407, pp. 92–106). Berlin: Springer.
Broersen, J., & Herzig, A. (to appear). Using STIT theory to talk about strategies. In J. van Benthem, S. Ghosh, & R. Verbrugge (Eds.), Modeling strategic reasoning, texts in logic and games. Springer.
Broersen, J., Herzig, A., & Troquard, N. (2006). Embedding alternating-time temporal logic in strategic STIT logic of agency. Journal of Logic and Computation, 16(5), 559–578.
Broersen, J., Herzig, A., & Troquard, N. (2009). What groups do, can do, and know they can do: An analysis in normal modal logics. Journal of Applied Non-Classical Logics, 19(3), 261–289.
Bulling, N., & Goranko, V. (2013). How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games (extended abstract). In F. Mogavero, A. Murano, M. Y. Vardi (Eds.), Proceedings 1st International Workshop on Strategic Reasoning, SR 2013, EPTCS (Vol. 112, pp. 33–41), March 16–17, 2013, Rome, Italy.
Bulling, N., Jamroga, W., & Dix, J. (2008). Reasoning about temporal properties of rational play. Annals of Mathematics and Artificial Intelligence, 53(1–4), 51–114.
Chareton, C., Brunel, J., & Chemouil, D. (2013). Towards an updatable strategy logic. In F. Mogavero, A. Murano, M. Y. Vardi (Eds.), Proceedings 1st International Workshop on Strategic Reasoning, SR 2013, EPTCS (Vol. 112, pp. 91–98), March 16–17, 2013, Rome, Italy.
Chellas, B. (1980). Modal logic: An introduction. Cambridge, MA: Cambridge University Press.
Clark, H. H., & Marshall, C. (1981). Definite reference and mutual knowledge. In A. Joshi, B. Webber, & I. Sag (Eds.), Elements of discourse understanding. Cambridge, MA: Cambridge University Press.
Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42(2–3), 213–261.
Cohen, P. R., & Levesque, H. J. (1990). Persistence, intentions, and commitment. Intentions in communication, chap 3 (pp. 33–69). Cambridge, MA: MIT Press.
Doutre, S., Herzig, A., & Perrussel, L. (2014). A dynamic logic framework for abstract argumentation. In C. Baral, G. De Giacomo (Eds.), Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.
Elgesem, D. (1997). The modal logic of agency. Nordic Journal of Philosophical Logic, 2(2), 1–46.
Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.
Fariñas del Cerro, L., Herzig, A., & Su, E. I. (2013). Combining equilibrium logic and dynamic logic. Logic programming and nonmonotonic reasoning (LPNMR). LNAI (Vol. 8148, pp. 304–316). Berlin: Springer.
French, T., & van Ditmarsch, H. P. (2008). Undecidability for arbitrary public announcement logic. In C. Areces & R. Goldblatt (Eds.), Advances in modal logic (pp. 23–42). London: College Publications.
French, T., van der Hoek, W., Iliev, P., & Kooi, B. P. (2011). Succinctness of epistemic languages. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence (pp. 881–886).
Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-dimensional modal logics: Theory and applications. Studies in logic and the foundations of mathematics (Vol. 148). North-Holland: Elsevier.
Gaudou, B., Herzig, A., & Longin, D. (2007). Grounding and the expression of belief. In P. Doherty, J. Mylopoulos, & C.Welty (Eds.), Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR’06) (pp. 221–229). AAAI Press.
Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on Artificial Intelligence, 2, 193–210.
Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language, and Information, 6, 147–196.
Gochet, P., & Gribomont, P. (2003). Epistemic logic. In D. Gabbay & J. Woods (Eds.), Handbook of the history and philosophy of logic (Vol. 4, pp. 463–502). Amsterdam: Elsevier Science.
Goranko, V. (2001). Coalition games and alternating temporal logics. TARK’01: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge (pp. 259–272). San Francisco, CA: Morgan Kaufmann Publishers Inc.
Goranko, V., & van Drimmelen, G. (2006). Complete axiomatization and decidability of alternating-time temporal logic. Theoretical Computer Science, 353(1–3), 93–117.
Hakli, R. (2006). Group beliefs and the distinction between belief and acceptance. Cognitive Systems Research, 7(2–3), 286–297.
Hales, J., Tay, E., & French, T. (2014). A composable language for action models. In R. Goré & A. Kurucs (Eds.), Advances in modal logic. London: College Publications.
Halpern, J. Y., & Shore, R. A. (2004). Reasoning about common knowledge with infinitely many agents. Information and Computation, 191(1), 1–40.
Halpern, J. Y. & Vardi, M. Y. (1991). Model checking vs. theorem proving: A manifesto. In J. F. Allen, R. Fikes, & E. Sandewall (Eds.) KR, Morgan Kaufmann (pp. 325–334).
Hansen, J. U. (2011). A hybrid public announcement logic with distributed knowledge. Electronic Notes in Theoretical Computer Science, 273, 33–50.
Harel, D. (1984). Dynamic logic. In D. M. Gabbay & F. Günthner (Eds.), Handbook of philosophical logic (Vol. II, pp. 497–604). Dordrecht: D. Reidel.
Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge, MA: MIT Press.
Harrenstein, P., van der Hoek, W., Meyer, J. J., & Witteveen, C. (2001). Boolean games. In Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’01 (pp. 287–298) San Francisco, CA: Morgan Kaufmann Publishers Inc.
Herzig, A. (2014). Belief change operations: A short history of nearly everything, told in dynamic logic of propositional assignments. In C. Baral, G. De Giacomo (Eds.) Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, KR 2014. AAAI Press.
Herzig, A., & Lorini, E. (2010). A dynamic logic of agency I: STIT, abilities and powers. Journal of Logic, Language and Information, 19, 89–121.
Herzig, A., & Schwarzentruber, F. (2008). Properties of logics of individual and group agency. In C. Areces & R. Goldblatt (Eds.), Advances in modal logic (AiML) (pp. 133–149). Nancy: College Publications.
Herzig, A., & Troquard, N. (2006). Knowing how to play: Uniform choices in logics of agency. In H. Nakashima, M. P. Wellman, G. Weiss, & P. Stone (Eds.), Proceedings of the Fifth International Joint conference on AAMAS (pp. 209–216). ACM.
Herzig, A., Lorini, E., Hübner, J. F., & Vercouter, L. (2010). A logic of trust and reputation. Logic Journal of the IGPL, 18(1), 214–244.
Herzig, A., Lorini, E., Moisan, F., & Troquard, N. (2011). A dynamic logic of normative systems. In T. Walsh (Ed.), International Joint Conference on Artificial Intelligence (IJCAI), IJCAI/AAAI, Barcelona (pp. 228–233).
Herzig, A., Lorini, E., & Troquard, N. (2014). Action theories. In S. O. Hansson & V. F. Hendricks (Eds.), Handbook of formal philosophy. Dordrecht: Springer.
Herzig, A., Lorini, E., & Walther, D. (2013). Alternating-time temporal logic with explicit actions. In D. Grossi (Ed.), LORI 2013 (pp. 228–233). Berlin: Springer Verlag.
Herzig, A., Menezes, V., Nunes De Barros, L., & Wassermann, R. (2014). On the revision of planning tasks. In T. Schaub (Ed.), European Conference on Artificial Intelligence (ECAI). IOS Press.
Herzig, A., Pozos Parra, P., & Schwarzentruber, F. (2014). Belief merging in dynamic logic of propositional assignments. In C. Beierle & C. Meghini (Eds.), International Symposium on Foundations of Information and Knowledge Systems (FoIKS) (FolKS), Bordeaux, March 3–7, 2014. Springer.
Horty, J. F. (2001). Agency and deontic logic. Oxford: Oxford University Press.
Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J. C., & van der Hoek, W. (2001). Reasoning about agents in the karo framework. In C. Bettini & A. Montanari (Eds.), Proceedings of the Eighth International Symposium on Temporal Representation and Reasoning (TIME-01) (pp. 206–213). Los Alamitos, CA: IEEE Press.
Jamroga, W., & Ågotnes, T. (2007). Constructive knowledge: what agents can achieve under imperfect information. Journal of Applied Non-Classical Logics, 17(4), 423–475.
Jamroga, W., & van der Hoek, W. (2004). Agents that know how to play. Fundamenta Informaticae, 63(2–3), 185–219.
Jamroga, W., van der Hoek, W., & Wooldridge, M. (2005). Intentions and strategies in game-like scenarios. In C. Bento, A. Cardoso, & G. Dias (Eds.), EPIA. Lecture notes in computer science (Vol. 3808, pp. 512–523). Berlin: Springer.
Kooi, B. (2007). Expressivity and completeness for public update logic via reduction axioms. Journal of Applied Non-Classical Logics, 17(2), 231–253.
Lakemeyer, G., & Levesque, H. J. (2011). A semantic characterization of a useful fragment of the situation calculus with knowledge. Artificial Intelligence, 175(1), 142–164.
Lee, J., Lifschitz, V., & Yang, F. (2013). Action language BC: Preliminary report. In F. Rossi (Ed.), Proceedings of the Twenty-Third International Joint Conference on IJCAI. IJCAI/AAAI.
Lenzen, W. (1978). Recent work in epistemic logic. Amsterdam: North Holland Publishing Company.
Lenzen, W. (1995). On the semantics and pragmatics of epistemic attitudes. In A. Laux & H. Wansing (Eds.), Knowledge and belief in philosophy and AI (pp. 181–197). Berlin: Akademie Verlag.
Lewis, D. K. (1969). Convention: A philosophical study. Cambridge, MA: Harvard University Press.
Lomuscio, A., & Raimondi, F. (2006). Model checking knowledge, strategies, and games in multi-agent systems. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 161–168). ACM.
Lorini, E. (2013). On the epistemic foundation for iterated weak dominance: An analysis in a logic of individual and collective attitudes. Journal of Philosophical Logic, 42(6), 863–904.
Lorini, E., & Herzig, A. (2013). Direct and indirect common belief. In A. Konzelmann Ziv, H.B. Schmid, & U. Schmid (Eds.), Collective intentionality. Studies in the philosophy of sociality (Vol. VII). Springer.
Lorini, E., & Schwarzentruber, F. (2010). A modal logic of epistemic games. Games, 1(4), 478–526.
Lorini, E., Longin, D., Gaudou, B., & Herzig, A. (2009). The logic of acceptance: Grounding institutions on agents’ attitudes. Journal of Logic and Computation, 19, 901–940. doi:10.1093/logcom/exn103.
Lorini, E., Longin, D., & Mayor, E. (2014). A logical analysis of responsibility attribution: Emotions, individuals and collectives. Journal of Logic and Computation. doi:10.1093/logcom/ext072.
Lutz, C. (2006). Complexity and succintness of public announcement logic. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’06) (pp. 137–144).
McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Mitchie (Eds.), Machine intelligence (Vol. 4, pp. 463–502). Edinburgh: Edinburgh University Press.
Meyer, J. J. C., & van der Hoek, W. (1995). Epistemic logic for AI and computer science. Cambridge, MA: Cambridge University Press.
Meyer, J. J. C., van der Hoek, W., & van Linder, B. (1999). A logical approach to the dynamics of commitments. Artificial Intelligence, 113(1–2), 1–40.
Mogavero, F., Murano, A., & Vardi, M. Y. (2010). Reasoning about strategies. In Proceedings of FSTTCS’10 (pp. 133–144).
Moore, R. C. (1985). A formal theory of knowledge and action. In J. Hobbs & R. Moore (Eds.), Formal theories of the commonsense world (pp. 319–358). Norwood, NJ: Ablex.
O’Hearn, P. W., Reynolds, J. C., & Yang, H. (2001). Local reasoning about programs that alter data structures. In L. Fribourg (Ed.), CSL. Lecture notes in computer science (Vol. 2142, pp. 1–19). Berlin: Springer.
Pauly, M. (2002). A modal logic for coalitional power in games. Journal of Logic and Computation, 12(1), 149–166.
Penczek, W., & Lomuscio, A. (2003). Verifying epistemic properties of multi-agent systems via bounded model checking. In Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 209–216). ACM.
Pörn, I. (1977). Action theory and social science: Some formal models. Synthese library (Vol. 120). Dordrecht: D. Reidel.
Pratt, V. (1980). A near-optimal method for reasoning about action. Journal of Computer and System Sciences, 20, 231–254.
Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In V. Lifschitz (Ed.), Artificial intelligence and mathematical theory of computation: Papers in honor of John McCarthy (pp. 359–380). San Diego, CA: Academic Press.
Reiter, R. (2001). Knowledge in action: Logical foundations for specifying and implementing dynamical systems. Cambridge, MA: MIT Press.
Roelofsen, F. (2007). Distributed knowledge. Journal of Applied Non-Classical Logics, 17(2), 255–273.
Scherl, R., & Levesque, H. J. (1993). The frame problem and knowledge producing actions. In Proceedings of the Eleventh National Conference on AI (AAAI’93) (pp. 689–695). AAAI Press.
Scherl, R., & Levesque, H. J. (2003). The frame problem and knowledge producing actions. Artificial Intelligence, 144(1–2), 1–39.
Schewe, S. (2008). ATL* satisfiability is 2EXPTIME-complete. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, & I. Walukiewicz (Eds.), ICALP (2). Lecture notes in computer science (Vol. 5126, pp. 373–385). Berlin: Springer.
Schobbens, P. Y. (2004). Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science, 85(2), 82–93.
Schwarzentruber, F. (2012). Complexity results of STIT fragments. Studia Logica, 100(5), 1001–1045.
Segerberg, K. (Ed.). (1992). “Logic of Action”: Special issue of Studia Logica (Vol. 51, pp. 3–4). Netherlands: Springer.
Shanahan, M. (1997). Solving the frame problem: A mathematical investigation of the common sense law of inertia. Cambridge, MA: MIT Press.
Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J. (2000). Iterated belief change in the situation calculus. In Principles of Knowledge Report and Reasoning: Proceedings of the 7th International Conference (pp. 527–538).
Thielscher, M. (2005). Reasoning robots—The art and science of programming robotic agents. Applied logic (Vol. 33). Dordrecht: Springer.
Troquard, N., & Walther, D. (2012). On satisfiability in ATL with strategy contexts. Proceedings of JELIA’12. LNCS (Vol. 7519, pp. 398–410). Berlin: Springer.
Tuomela, R. (1995). The importance of us: A philosophical study of basic social notions. Stanford series in philosophy. Stanford, CA: Stanford University Press.
van Benthem, J. (2006). One is a lonely number: On the logic of communication. In Z. Chatzidakis, P. Koepke, & W. Pohlers (Eds.), Logic Colloquium’02 Tech Report PP-2002-27 (pp. 96–129), ILLC Amsterdam (2002). Wellesley, MA: ASL & A.K. Peters.
van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2), 129–155.
van Benthem, J. (2013). Reasoning about strategies. In B. Coecke, L. Ong, & P. Panangaden (Eds.), Computation, logic, games, and quantum foundations. Lecture notes in computer science (Vol. 7860, pp. 336–347). Berlin: Springer.
van der Hoek, W., & Wooldridge, M. (2003). Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica, 75, 125–157.
van der Hoek, W., & Wooldridge, M. (2005). On the logic of cooperation and propositional control. Artificial Intelligence, 164(1–2), 81–119.
van der Hoek, W., Troquard, N., & Wooldridge, M. (2011). Knowledge and control. In L. Sonenberg, P. Stone, K. Tumer, & P. Yolum (Eds.), The 10th International Conference on AAMAS (pp. 719–726). IFAAMAS.
van der Hoek, W., Walther, D., & Wooldridge, M. (2010). On the logic of cooperation and the transfer of control. Journal of AI Research (JAIR), 37, 437–477.
van Ditmarsch, H. P. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147(2), 229–275.
van Ditmarsch, H. P., Herzig, A., & de Lima, T. (2011). From situation calculus to dynamic logic. Journal of Logic and Computation, 21(2), 179–204.
van Ditmarsch, H. P., Herzig, A., & De Lima, T. (2012). Public announcements, public assignments and the complexity of their logic. Journal of Applied Non-Classical Logics, 22(3), 249–273.
van Ditmarsch, H. P., Herzig, A., Lorini, E., & Schwarzentruber, F. (2013). Listen to me! Public announcements to agents that pay attention—or not. In D. Grossi (Ed.), LORI 2013 (pp. 228–233). Berlin: Springer Verlag.
van Ditmarsch, H. P., van der Hoek, W., & Kooi, B. P. (2005). Dynamic epistemic logic with assignment. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, & M. Wooldridge (Eds.), Proceedings of the Fourth International Joint Conference on AAMAS (pp. 141–148). ACM.
Vassos, S., Lakemeyer, G., & Levesque, H. J. (2008). First-order strong progression for local-effect basic action theories. In G. Brewka & J. Lang (Ed.), KR (pp. 662–672). AAAI Press.
Voorbraak, F. (1993). As far as I know: Epistemic logic and uncertainty. PhD thesis, Universiteit Utrecht.
Walther, D., Lutz, C., Wolter, F., & Wooldridge, M. (2006). ATL satisfiability is indeed EXPTIME-complete. Journal of Logic and Computation, 16(6), 765–787.
Walther, D., van der Hoek, W., & Wooldridge, M. (2007). Alternating-time temporal logic with explicit strategies. In Proceedings of TARK’07 (pp. 269–278). ACM.
Wáng, Y. N., & Ågotnes, T. (2013). Public announcement logic with distributed knowledge: Expressivity, completeness and complexity. Synthese, 190(18), 135–162.
Yadav, N., & Sardiña, S. (2012). Reasoning about agent programs using ATL-like logics. In L. Fariñas del Cerro, A. Herzig, & J. Mengin (Eds.), JELIA. Lecture notes in computer science (Vol. 7519, pp. 437–449). Berlin: Springer.
Acknowledgments
The ideas in this paper were presented in an invited talk at the 2013 International Joint Conference on Artificial Intelligence (IJCAI 2013) that was entitled “Logics for multiagent systems: a critical overview”. It is based on joint work with several colleagues that I would like to thank here for our smooth and fruitful collaboration: Philippe Balbiani (U. Toulouse, CNRS), Jan Broersen (U. Utrecht), Hans van Ditmarsch (U. Nancy, CNRS), Benoit Gaudou (U. Toulouse), Tiago de Lima (U. Artois, CNRS), Emiliano Lorini (U. Toulouse, CNRS), Faustine Maffre (U. Toulouse), Frédédric Moisan (U. Toulouse), François Schwarzentruber (U. Rennes, ENS), Nicolas Troquard (CNR, Trento), Dirk Walther (U. Politecnica de Madrid/U. Dresden). The overview presented in this paper is part of the efforts of the SINTELNET network (www.sintelnet.eu) to reexamine the logical foundations of concepts that are commonly used in artificial intelligence and the social sciences.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Herzig, A. Logics of knowledge and action: critical analysis and challenges. Auton Agent Multi-Agent Syst 29, 719–753 (2015). https://doi.org/10.1007/s10458-014-9267-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10458-014-9267-z
Keywords
- Logic of action
- Logic of knowledge
- Common knowledge
- Frame problem
- Uniform strategy