Autonomous Agents and Multi-Agent Systems

, Volume 29, Issue 5, pp 719–753 | Cite as

Logics of knowledge and action: critical analysis and challenges

Article

Abstract

We overview the most prominent logics of knowledge and action that were proposed and studied in the multiagent systems literature. We classify them according to these two dimensions, knowledge and action, and moreover introduce a distinction between individual knowledge and group knowledge, and between a nonstrategic an a strategic interpretation of action operators. For each of the logics in our classification we highlight problematic properties. They indicate weaknesses in the design of these logics and call into question their suitability to represent knowledge and reason about it. This leads to a list of research challenges.

Keywords

Logic of action Logic of knowledge Common knowledge Frame problem Uniform strategy 

References

  1. 1.
    Ågotnes, T., Goranko, V., & Jamroga, W. (2007). Alternating-time temporal logics with irrevocable strategies. In: D. Samet (Ed.), Proceedings of the 11th Conference on TARK (pp. 15–24).Google Scholar
  2. 2.
    Ågotnes, T., Balbiani, P., van Ditmarsch, H. P., & Seban, P. (2010). Group announcement logic. Journal of Applied Logic, 8, 62–81.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alchourrón, C., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50, 510–530.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alechina, N. (2013). Logic and agent programming languages. In L. Libkin, U. Kohlenbach, & R. J. G. B. de Queiroz (Eds.), WoLLIC. Lecture notes in computer science (Vol. 8071, pp. 1–10). Berlin: Springer.Google Scholar
  5. 5.
    Alur, R., Henzinger, T. A., & Kupferman, O. (2002). Alternating-time temporal logic. Journal of the ACM, 49(5), 672–713.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aucher, G. (2004). A combined system for update logic and belief revision. In M. Barley & N. K. Kasabov (Eds.), PRIMA. Lecture notes in computer science (Vol. 3371, pp. 1–17). Berlin: Springer.Google Scholar
  7. 7.
    Aucher, G. (2008). Internal models and private multi-agent belief revision. In L. Padgham, D. C. Parkes, J. P. Müller, & S. Parsons (Eds.), Proceedings of the 7th International Joint Conference AAMAS (Vol. 2, pp. 721–727). IFAAMAS.Google Scholar
  8. 8.
    Aucher, G. (2008). Perspectives on belief and change. PhD thesis, University of Otago and University Paul Sabatier.Google Scholar
  9. 9.
    Aumann, R. J. (1976). Agreeing to disagree. The Annals of Statistics, 4(6), 1236–1239.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Balbiani, P., Baltag, A., van Ditmarsch, H. P., Herzig, A., Hoshi, T., & de Lima, T. (2008). Knowable’as ‘known after an announcement. Review of Symbolic Logic, 1(3), 305–334.CrossRefGoogle Scholar
  11. 11.
    Balbiani, P., Herzig, A., & Troquard, N. (2008). Alternative axiomatics and complexity of deliberative STIT theories. Journal of Philosophical Logic, 37(4), 387–406.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Balbiani, P., Herzig, A.,&Troquard, N. (2013). Dynamic logic of propositional assignments: A well-behaved variant of PDL. In O. Kupferman (Ed.), Logic in computer science (LICS) (pp. 143–152), June 25–28, 2013. New Orleans, LA: ACM/IEEE. Retrieved from http://www.ieee.org/.
  13. 13.
    Balbiani, P., van Ditmarsch, H. P., Herzig, A., & de Lima, T. (2012). Some truths are best left unsaid. In T. Bolander, T. Braüner, S. Ghilardi, & L. S. Moss (Eds.), Advances in modal logic (pp. 36–54). London: College Publications.Google Scholar
  14. 14.
    Baltag, A., & Moss, L. S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Baltag, A., & Smets, S. (2009). Group belief dynamics under iterated revision: Fixed points and cycles of joint upgrades. In A. Heifetz (Ed.), Proceedings of the 12th Conference on TARK (pp. 41–50).Google Scholar
  16. 16.
    Baltag, A., Gierasimczuk, N., & Smets, S. (2011). Belief revision as a truth-tracking process. In K. R. Apt (Ed.), Proceedings of the 13th Conference on TARK (pp. 187–190). ACM.Google Scholar
  17. 17.
    Baltag, A., Renne, B., & Smets, S. (2014). The logic of justified belief, explicit knowledge, and conclusive evidence. Annals of Pure and Applied Logic, 165(1), 49–81.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Belardinelli, F. (2014). Reasoning about knowledge and strategies: Epistemic strategy logic. In F. Mogavero, A. Murano, & M. Y. Vardi (Eds.) SR, EPTCS (Vol. 146, pp. 27–33).Google Scholar
  19. 19.
    Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist world. Oxford: Oxford University Press.Google Scholar
  20. 20.
    Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in theoretical computer science. Cambridge: Cambridge University Press.Google Scholar
  21. 21.
    Bonzon, E., Lagasquie-Schiex, M. C., Lang, J., & Zanuttini, B. (2006). Boolean games revisited. In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), ECAI. Frontiers in artificial intelligence and applications (Vol. 141, pp. 265–269). Amsterdam: IOS Press.Google Scholar
  22. 22.
    Brihaye, T., da Costa Lopes, A., Laroussinie, F., & Markey, N. (2009). ATL with strategy contexts and bounded memory. Proceedings of LFSC’09. LNCS (Vol. 5407, pp. 92–106). Berlin: Springer.Google Scholar
  23. 23.
    Broersen, J., & Herzig, A. (to appear). Using STIT theory to talk about strategies. In J. van Benthem, S. Ghosh, & R. Verbrugge (Eds.), Modeling strategic reasoning, texts in logic and games. Springer.Google Scholar
  24. 24.
    Broersen, J., Herzig, A., & Troquard, N. (2006). Embedding alternating-time temporal logic in strategic STIT logic of agency. Journal of Logic and Computation, 16(5), 559–578.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Broersen, J., Herzig, A., & Troquard, N. (2009). What groups do, can do, and know they can do: An analysis in normal modal logics. Journal of Applied Non-Classical Logics, 19(3), 261–289.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bulling, N., & Goranko, V. (2013). How to be both rich and happy: Combining quantitative and qualitative strategic reasoning about multi-player games (extended abstract). In F. Mogavero, A. Murano, M. Y. Vardi (Eds.), Proceedings 1st International Workshop on Strategic Reasoning, SR 2013, EPTCS (Vol. 112, pp. 33–41), March 16–17, 2013, Rome, Italy.Google Scholar
  27. 27.
    Bulling, N., Jamroga, W., & Dix, J. (2008). Reasoning about temporal properties of rational play. Annals of Mathematics and Artificial Intelligence, 53(1–4), 51–114.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chareton, C., Brunel, J., & Chemouil, D. (2013). Towards an updatable strategy logic. In F. Mogavero, A. Murano, M. Y. Vardi (Eds.), Proceedings 1st International Workshop on Strategic Reasoning, SR 2013, EPTCS (Vol. 112, pp. 91–98), March 16–17, 2013, Rome, Italy.Google Scholar
  29. 29.
    Chellas, B. (1980). Modal logic: An introduction. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  30. 30.
    Clark, H. H., & Marshall, C. (1981). Definite reference and mutual knowledge. In A. Joshi, B. Webber, & I. Sag (Eds.), Elements of discourse understanding. Cambridge, MA: Cambridge University Press.Google Scholar
  31. 31.
    Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42(2–3), 213–261.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Cohen, P. R., & Levesque, H. J. (1990). Persistence, intentions, and commitment. Intentions in communication, chap 3 (pp. 33–69). Cambridge, MA: MIT Press.Google Scholar
  33. 33.
    Doutre, S., Herzig, A., & Perrussel, L. (2014). A dynamic logic framework for abstract argumentation. In C. Baral, G. De Giacomo (Eds.), Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.Google Scholar
  34. 34.
    Elgesem, D. (1997). The modal logic of agency. Nordic Journal of Philosophical Logic, 2(2), 1–46.MathSciNetGoogle Scholar
  35. 35.
    Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge. Cambridge, MA: MIT Press.Google Scholar
  36. 36.
    Fariñas del Cerro, L., Herzig, A., & Su, E. I. (2013). Combining equilibrium logic and dynamic logic. Logic programming and nonmonotonic reasoning (LPNMR). LNAI (Vol. 8148, pp. 304–316). Berlin: Springer.CrossRefGoogle Scholar
  37. 37.
    French, T., & van Ditmarsch, H. P. (2008). Undecidability for arbitrary public announcement logic. In C. Areces & R. Goldblatt (Eds.), Advances in modal logic (pp. 23–42). London: College Publications.Google Scholar
  38. 38.
    French, T., van der Hoek, W., Iliev, P., & Kooi, B. P. (2011). Succinctness of epistemic languages. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence (pp. 881–886).Google Scholar
  39. 39.
    Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-dimensional modal logics: Theory and applications. Studies in logic and the foundations of mathematics (Vol. 148). North-Holland: Elsevier.Google Scholar
  40. 40.
    Gaudou, B., Herzig, A., & Longin, D. (2007). Grounding and the expression of belief. In P. Doherty, J. Mylopoulos, & C.Welty (Eds.), Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR’06) (pp. 221–229). AAAI Press.Google Scholar
  41. 41.
    Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on Artificial Intelligence, 2, 193–210.MathSciNetGoogle Scholar
  42. 42.
    Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language, and Information, 6, 147–196.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Gochet, P., & Gribomont, P. (2003). Epistemic logic. In D. Gabbay & J. Woods (Eds.), Handbook of the history and philosophy of logic (Vol. 4, pp. 463–502). Amsterdam: Elsevier Science.Google Scholar
  44. 44.
    Goranko, V. (2001). Coalition games and alternating temporal logics. TARK’01: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge (pp. 259–272). San Francisco, CA: Morgan Kaufmann Publishers Inc.Google Scholar
  45. 45.
    Goranko, V., & van Drimmelen, G. (2006). Complete axiomatization and decidability of alternating-time temporal logic. Theoretical Computer Science, 353(1–3), 93–117.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Hakli, R. (2006). Group beliefs and the distinction between belief and acceptance. Cognitive Systems Research, 7(2–3), 286–297.CrossRefGoogle Scholar
  47. 47.
    Hales, J., Tay, E., & French, T. (2014). A composable language for action models. In R. Goré & A. Kurucs (Eds.), Advances in modal logic. London: College Publications.Google Scholar
  48. 48.
    Halpern, J. Y., & Shore, R. A. (2004). Reasoning about common knowledge with infinitely many agents. Information and Computation, 191(1), 1–40.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Halpern, J. Y. & Vardi, M. Y. (1991). Model checking vs. theorem proving: A manifesto. In J. F. Allen, R. Fikes, & E. Sandewall (Eds.) KR, Morgan Kaufmann (pp. 325–334).Google Scholar
  50. 50.
    Hansen, J. U. (2011). A hybrid public announcement logic with distributed knowledge. Electronic Notes in Theoretical Computer Science, 273, 33–50.CrossRefGoogle Scholar
  51. 51.
    Harel, D. (1984). Dynamic logic. In D. M. Gabbay & F. Günthner (Eds.), Handbook of philosophical logic (Vol. II, pp. 497–604). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  52. 52.
    Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Cambridge, MA: MIT Press.Google Scholar
  53. 53.
    Harrenstein, P., van der Hoek, W., Meyer, J. J., & Witteveen, C. (2001). Boolean games. In Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’01 (pp. 287–298) San Francisco, CA: Morgan Kaufmann Publishers Inc.Google Scholar
  54. 54.
    Herzig, A. (2014). Belief change operations: A short history of nearly everything, told in dynamic logic of propositional assignments. In C. Baral, G. De Giacomo (Eds.) Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, KR 2014. AAAI Press.Google Scholar
  55. 55.
    Herzig, A., & Lorini, E. (2010). A dynamic logic of agency I: STIT, abilities and powers. Journal of Logic, Language and Information, 19, 89–121.MathSciNetCrossRefGoogle Scholar
  56. 56.
    Herzig, A., & Schwarzentruber, F. (2008). Properties of logics of individual and group agency. In C. Areces & R. Goldblatt (Eds.), Advances in modal logic (AiML) (pp. 133–149). Nancy: College Publications.Google Scholar
  57. 57.
    Herzig, A., & Troquard, N. (2006). Knowing how to play: Uniform choices in logics of agency. In H. Nakashima, M. P. Wellman, G. Weiss, & P. Stone (Eds.), Proceedings of the Fifth International Joint conference on AAMAS (pp. 209–216). ACM.Google Scholar
  58. 58.
    Herzig, A., Lorini, E., Hübner, J. F., & Vercouter, L. (2010). A logic of trust and reputation. Logic Journal of the IGPL, 18(1), 214–244.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Herzig, A., Lorini, E., Moisan, F., & Troquard, N. (2011). A dynamic logic of normative systems. In T. Walsh (Ed.), International Joint Conference on Artificial Intelligence (IJCAI), IJCAI/AAAI, Barcelona (pp. 228–233).Google Scholar
  60. 60.
    Herzig, A., Lorini, E., & Troquard, N. (2014). Action theories. In S. O. Hansson & V. F. Hendricks (Eds.), Handbook of formal philosophy. Dordrecht: Springer.Google Scholar
  61. 61.
    Herzig, A., Lorini, E., & Walther, D. (2013). Alternating-time temporal logic with explicit actions. In D. Grossi (Ed.), LORI 2013 (pp. 228–233). Berlin: Springer Verlag.Google Scholar
  62. 62.
    Herzig, A., Menezes, V., Nunes De Barros, L., & Wassermann, R. (2014). On the revision of planning tasks. In T. Schaub (Ed.), European Conference on Artificial Intelligence (ECAI). IOS Press.Google Scholar
  63. 63.
    Herzig, A., Pozos Parra, P., & Schwarzentruber, F. (2014). Belief merging in dynamic logic of propositional assignments. In C. Beierle & C. Meghini (Eds.), International Symposium on Foundations of Information and Knowledge Systems (FoIKS) (FolKS), Bordeaux, March 3–7, 2014. Springer.Google Scholar
  64. 64.
    Horty, J. F. (2001). Agency and deontic logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  65. 65.
    Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J. C., & van der Hoek, W. (2001). Reasoning about agents in the karo framework. In C. Bettini & A. Montanari (Eds.), Proceedings of the Eighth International Symposium on Temporal Representation and Reasoning (TIME-01) (pp. 206–213). Los Alamitos, CA: IEEE Press.Google Scholar
  66. 66.
    Jamroga, W., & Ågotnes, T. (2007). Constructive knowledge: what agents can achieve under imperfect information. Journal of Applied Non-Classical Logics, 17(4), 423–475.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Jamroga, W., & van der Hoek, W. (2004). Agents that know how to play. Fundamenta Informaticae, 63(2–3), 185–219.MathSciNetGoogle Scholar
  68. 68.
    Jamroga, W., van der Hoek, W., & Wooldridge, M. (2005). Intentions and strategies in game-like scenarios. In C. Bento, A. Cardoso, & G. Dias (Eds.), EPIA. Lecture notes in computer science (Vol. 3808, pp. 512–523). Berlin: Springer.Google Scholar
  69. 69.
    Kooi, B. (2007). Expressivity and completeness for public update logic via reduction axioms. Journal of Applied Non-Classical Logics, 17(2), 231–253.MathSciNetCrossRefGoogle Scholar
  70. 70.
    Lakemeyer, G., & Levesque, H. J. (2011). A semantic characterization of a useful fragment of the situation calculus with knowledge. Artificial Intelligence, 175(1), 142–164.MathSciNetCrossRefGoogle Scholar
  71. 71.
    Lee, J., Lifschitz, V., & Yang, F. (2013). Action language BC: Preliminary report. In F. Rossi (Ed.), Proceedings of the Twenty-Third International Joint Conference on IJCAI. IJCAI/AAAI.Google Scholar
  72. 72.
    Lenzen, W. (1978). Recent work in epistemic logic. Amsterdam: North Holland Publishing Company.Google Scholar
  73. 73.
    Lenzen, W. (1995). On the semantics and pragmatics of epistemic attitudes. In A. Laux & H. Wansing (Eds.), Knowledge and belief in philosophy and AI (pp. 181–197). Berlin: Akademie Verlag.Google Scholar
  74. 74.
    Lewis, D. K. (1969). Convention: A philosophical study. Cambridge, MA: Harvard University Press.Google Scholar
  75. 75.
    Lomuscio, A., & Raimondi, F. (2006). Model checking knowledge, strategies, and games in multi-agent systems. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 161–168). ACM.Google Scholar
  76. 76.
    Lorini, E. (2013). On the epistemic foundation for iterated weak dominance: An analysis in a logic of individual and collective attitudes. Journal of Philosophical Logic, 42(6), 863–904.MathSciNetCrossRefGoogle Scholar
  77. 77.
    Lorini, E., & Herzig, A. (2013). Direct and indirect common belief. In A. Konzelmann Ziv, H.B. Schmid, & U. Schmid (Eds.), Collective intentionality. Studies in the philosophy of sociality (Vol. VII). Springer.Google Scholar
  78. 78.
    Lorini, E., & Schwarzentruber, F. (2010). A modal logic of epistemic games. Games, 1(4), 478–526.MathSciNetCrossRefGoogle Scholar
  79. 79.
    Lorini, E., Longin, D., Gaudou, B., & Herzig, A. (2009). The logic of acceptance: Grounding institutions on agents’ attitudes. Journal of Logic and Computation, 19, 901–940. doi:10.1093/logcom/exn103.MathSciNetCrossRefGoogle Scholar
  80. 80.
    Lorini, E., Longin, D., & Mayor, E. (2014). A logical analysis of responsibility attribution: Emotions, individuals and collectives. Journal of Logic and Computation. doi:10.1093/logcom/ext072.
  81. 81.
    Lutz, C. (2006). Complexity and succintness of public announcement logic. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’06) (pp. 137–144).Google Scholar
  82. 82.
    McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Mitchie (Eds.), Machine intelligence (Vol. 4, pp. 463–502). Edinburgh: Edinburgh University Press.Google Scholar
  83. 83.
    Meyer, J. J. C., & van der Hoek, W. (1995). Epistemic logic for AI and computer science. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  84. 84.
    Meyer, J. J. C., van der Hoek, W., & van Linder, B. (1999). A logical approach to the dynamics of commitments. Artificial Intelligence, 113(1–2), 1–40.Google Scholar
  85. 85.
    Mogavero, F., Murano, A., & Vardi, M. Y. (2010). Reasoning about strategies. In Proceedings of FSTTCS’10 (pp. 133–144).Google Scholar
  86. 86.
    Moore, R. C. (1985). A formal theory of knowledge and action. In J. Hobbs & R. Moore (Eds.), Formal theories of the commonsense world (pp. 319–358). Norwood, NJ: Ablex.Google Scholar
  87. 87.
    O’Hearn, P. W., Reynolds, J. C., & Yang, H. (2001). Local reasoning about programs that alter data structures. In L. Fribourg (Ed.), CSL. Lecture notes in computer science (Vol. 2142, pp. 1–19). Berlin: Springer.Google Scholar
  88. 88.
    Pauly, M. (2002). A modal logic for coalitional power in games. Journal of Logic and Computation, 12(1), 149–166.MathSciNetCrossRefGoogle Scholar
  89. 89.
    Penczek, W., & Lomuscio, A. (2003). Verifying epistemic properties of multi-agent systems via bounded model checking. In Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 209–216). ACM.Google Scholar
  90. 90.
    Pörn, I. (1977). Action theory and social science: Some formal models. Synthese library (Vol. 120). Dordrecht: D. Reidel.CrossRefGoogle Scholar
  91. 91.
    Pratt, V. (1980). A near-optimal method for reasoning about action. Journal of Computer and System Sciences, 20, 231–254.MathSciNetCrossRefGoogle Scholar
  92. 92.
    Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In V. Lifschitz (Ed.), Artificial intelligence and mathematical theory of computation: Papers in honor of John McCarthy (pp. 359–380). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  93. 93.
    Reiter, R. (2001). Knowledge in action: Logical foundations for specifying and implementing dynamical systems. Cambridge, MA: MIT Press.Google Scholar
  94. 94.
    Roelofsen, F. (2007). Distributed knowledge. Journal of Applied Non-Classical Logics, 17(2), 255–273.MathSciNetCrossRefGoogle Scholar
  95. 95.
    Scherl, R., & Levesque, H. J. (1993). The frame problem and knowledge producing actions. In Proceedings of the Eleventh National Conference on AI (AAAI’93) (pp. 689–695). AAAI Press.Google Scholar
  96. 96.
    Scherl, R., & Levesque, H. J. (2003). The frame problem and knowledge producing actions. Artificial Intelligence, 144(1–2), 1–39.MathSciNetCrossRefGoogle Scholar
  97. 97.
    Schewe, S. (2008). ATL* satisfiability is 2EXPTIME-complete. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, & I. Walukiewicz (Eds.), ICALP (2). Lecture notes in computer science (Vol. 5126, pp. 373–385). Berlin: Springer.Google Scholar
  98. 98.
    Schobbens, P. Y. (2004). Alternating-time logic with imperfect recall. Electronic Notes in Theoretical Computer Science, 85(2), 82–93.MathSciNetCrossRefGoogle Scholar
  99. 99.
    Schwarzentruber, F. (2012). Complexity results of STIT fragments. Studia Logica, 100(5), 1001–1045.MathSciNetCrossRefGoogle Scholar
  100. 100.
    Segerberg, K. (Ed.). (1992). “Logic of Action”: Special issue of Studia Logica (Vol. 51, pp. 3–4). Netherlands: Springer.Google Scholar
  101. 101.
    Shanahan, M. (1997). Solving the frame problem: A mathematical investigation of the common sense law of inertia. Cambridge, MA: MIT Press.Google Scholar
  102. 102.
    Shapiro, S., Pagnucco, M., Lespérance, Y., Levesque, H.J. (2000). Iterated belief change in the situation calculus. In Principles of Knowledge Report and Reasoning: Proceedings of the 7th International Conference (pp. 527–538).Google Scholar
  103. 103.
    Thielscher, M. (2005). Reasoning robots—The art and science of programming robotic agents. Applied logic (Vol. 33). Dordrecht: Springer.Google Scholar
  104. 104.
    Troquard, N., & Walther, D. (2012). On satisfiability in ATL with strategy contexts. Proceedings of JELIA’12. LNCS (Vol. 7519, pp. 398–410). Berlin: Springer.Google Scholar
  105. 105.
    Tuomela, R. (1995). The importance of us: A philosophical study of basic social notions. Stanford series in philosophy. Stanford, CA: Stanford University Press.Google Scholar
  106. 106.
    van Benthem, J. (2006). One is a lonely number: On the logic of communication. In Z. Chatzidakis, P. Koepke, & W. Pohlers (Eds.), Logic Colloquium’02 Tech Report PP-2002-27 (pp. 96–129), ILLC Amsterdam (2002). Wellesley, MA: ASL & A.K. Peters.Google Scholar
  107. 107.
    van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17(2), 129–155.MathSciNetCrossRefGoogle Scholar
  108. 108.
    van Benthem, J. (2013). Reasoning about strategies. In B. Coecke, L. Ong, & P. Panangaden (Eds.), Computation, logic, games, and quantum foundations. Lecture notes in computer science (Vol. 7860, pp. 336–347). Berlin: Springer.Google Scholar
  109. 109.
    van der Hoek, W., & Wooldridge, M. (2003). Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica, 75, 125–157.MathSciNetCrossRefGoogle Scholar
  110. 110.
    van der Hoek, W., & Wooldridge, M. (2005). On the logic of cooperation and propositional control. Artificial Intelligence, 164(1–2), 81–119.MathSciNetCrossRefGoogle Scholar
  111. 111.
    van der Hoek, W., Troquard, N., & Wooldridge, M. (2011). Knowledge and control. In L. Sonenberg, P. Stone, K. Tumer, & P. Yolum (Eds.), The 10th International Conference on AAMAS (pp. 719–726). IFAAMAS.Google Scholar
  112. 112.
    van der Hoek, W., Walther, D., & Wooldridge, M. (2010). On the logic of cooperation and the transfer of control. Journal of AI Research (JAIR), 37, 437–477.Google Scholar
  113. 113.
    van Ditmarsch, H. P. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147(2), 229–275.MathSciNetCrossRefGoogle Scholar
  114. 114.
    van Ditmarsch, H. P., Herzig, A., & de Lima, T. (2011). From situation calculus to dynamic logic. Journal of Logic and Computation, 21(2), 179–204.MathSciNetCrossRefGoogle Scholar
  115. 115.
    van Ditmarsch, H. P., Herzig, A., & De Lima, T. (2012). Public announcements, public assignments and the complexity of their logic. Journal of Applied Non-Classical Logics, 22(3), 249–273.MathSciNetCrossRefGoogle Scholar
  116. 116.
    van Ditmarsch, H. P., Herzig, A., Lorini, E., & Schwarzentruber, F. (2013). Listen to me! Public announcements to agents that pay attention—or not. In D. Grossi (Ed.), LORI 2013 (pp. 228–233). Berlin: Springer Verlag.Google Scholar
  117. 117.
    van Ditmarsch, H. P., van der Hoek, W., & Kooi, B. P. (2005). Dynamic epistemic logic with assignment. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh, & M. Wooldridge (Eds.), Proceedings of the Fourth International Joint Conference on AAMAS (pp. 141–148). ACM.Google Scholar
  118. 118.
    Vassos, S., Lakemeyer, G., & Levesque, H. J. (2008). First-order strong progression for local-effect basic action theories. In G. Brewka & J. Lang (Ed.), KR (pp. 662–672). AAAI Press.Google Scholar
  119. 119.
    Voorbraak, F. (1993). As far as I know: Epistemic logic and uncertainty. PhD thesis, Universiteit Utrecht.Google Scholar
  120. 120.
    Walther, D., Lutz, C., Wolter, F., & Wooldridge, M. (2006). ATL satisfiability is indeed EXPTIME-complete. Journal of Logic and Computation, 16(6), 765–787.MathSciNetCrossRefGoogle Scholar
  121. 121.
    Walther, D., van der Hoek, W., & Wooldridge, M. (2007). Alternating-time temporal logic with explicit strategies. In Proceedings of TARK’07 (pp. 269–278). ACM.Google Scholar
  122. 122.
    Wáng, Y. N., & Ågotnes, T. (2013). Public announcement logic with distributed knowledge: Expressivity, completeness and complexity. Synthese, 190(18), 135–162.MathSciNetCrossRefGoogle Scholar
  123. 123.
    Yadav, N., & Sardiña, S. (2012). Reasoning about agent programs using ATL-like logics. In L. Fariñas del Cerro, A. Herzig, & J. Mengin (Eds.), JELIA. Lecture notes in computer science (Vol. 7519, pp. 437–449). Berlin: Springer.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.CNRS and University of Toulouse, IRITToulouse Cedex 9France

Personalised recommendations