Skip to main content

Constrained automated mechanism design for infinite games of incomplete information

Abstract

We present a functional framework for automated Bayesian and worst-case mechanism design, based on a two-stage game model of strategic interaction between the designer and the mechanism participants. At the core of our framework is a black-box optimization algorithm which guides the process of evaluating candidate mechanisms. We apply the approach to several classes of two-player infinite games of incomplete information, producing optimal or nearly optimal mechanisms using various objective functions. By comparing our results with known optimal mechanisms, and in some cases improving on the best known mechanisms, we provide evidence that ours is a promising approach to parametrized mechanism design for infinite Bayesian games.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Ben-Tal A., Nemirovski A. (2002) Robust optimization: Methodology and applications. Mathematical Programming 92: 453–480

    MathSciNet  MATH  Article  Google Scholar 

  2. 2

    Brandt, F., Sandholm, T., & Shoham, Y. (2007). Spiteful bidding in sealed-bid auctions. In Twentieth International Joint Conference in Artificial Intelligence, Hyderabad, India, pp. 1207–1214.

  3. 3

    Brandt, F., & Wei  G. (2001). Antisocial agents and Vickrey auctions. In Eighth International Workshop on Agent Theories, Architectures, and Languages. Lecture Notes in Computer Science (Vol. 2333, pp. 335–347). Seattle, WA: Springer.

  4. 4

    Byde A. (2006) Applying evolutionary search to a parametric family of auction mechanisms. Australian Journal of Management 31(1): 1–16

    Article  Google Scholar 

  5. 5

    Conitzer, V., & Sandholm, T. (2002). Complexity of mechanism design. In Eighteenth Conference on Uncertainty in Artificial Intelligence, Edmonton, AB, Canada, pp. 103–110.

  6. 6

    Conitzer, V., & Sandholm, T. (2003a). Applications of automated mechanism design. In UAI-03 Bayesian Modeling Applications Workshop, Acapulco, Mexico.

  7. 7

    Conitzer, V., & Sandholm, T. (2003b). Computational criticisms of the revelation principle. In Workshop on Agent Mediated Electronic Commerce-V, Melbourne, Australia.

  8. 8

    Corana A., Marchesi M., Martini C., Ridella S. (1987) Minimizing multimodal functions of continuous variables with simulated annealing algorithm. ACM Transactions on Mathematical Software 13(3): 262–280

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Cramton P., Gibbons R., Klemperer P. (1987) Dissolving a partnership efficiently. Econometrica 55(3): 615–632

    MathSciNet  MATH  Article  Google Scholar 

  10. 10

    Fleischer, M. (1995). Simulated annealing: Past, present, and future. In Winter Simulation Conference, Arlington, VA, pp. 155–161.

  11. 11

    Gallien J. (2006) Dynamic mechanism design for online commerce. Operations Research 54: 291–310

    MathSciNet  MATH  Article  Google Scholar 

  12. 12

    Ganzfried, S., & Sandholm, T. (2010). Computing equilibria by incorporating qualitative models. In Ninth International Conference on Autonomous Agents and Multi-Agent Systems, Toronto, ON, Canada, pp. 183–190.

  13. 13

    Guo M., Conitzer V. (2009) Worst-case optimal redistribution of VCG payments in multi-unit auctions. Games and Economic Behavior 67(1): 69–98

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Guo M., Conitzer V. (2010) Optimal-in-expectation redistribution mechanisms. Artificial Intelligence 174(5–6): 363–381

    MathSciNet  MATH  Article  Google Scholar 

  15. 15

    McAfee R. P. (1992) Amicable divorce: Dissolving a partnership with simple mechanisms. Journal of Economic Theory 56(2): 266–293

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    McKelvey, R. D., McLennan, A. M., & Turocy, T. L. (2010). Gambit: Software tools for game theory, version 0.2010.09.01. http://www.gambit-project.org.

  17. 17

    McMillan J. (1994) Selling spectrum rights. The Journal of Economic Perspectives 8(3): 145–162

    Article  Google Scholar 

  18. 18

    Morgan J., Steiglitz K., Reis G. (2003) The spite motive and equilibrium behavior in auctions. Contributions to Economic Analysis and Policy 2(1): 1102–1107

    Google Scholar 

  19. 19

    Myerson R. B. (1981) Optimal auction design. Mathematics of Operations Research 6(1): 58–73

    MathSciNet  MATH  Article  Google Scholar 

  20. 20

    Nisan N. (2007) Introduction to mechanism design (for computer scientists). In: Nisan N., Roughgarden T., Tardos E., Vazirani V. V. (eds) Algorithmic game theory. Cambridge University Press, Cambridge, pp 209–241

    Chapter  Google Scholar 

  21. 21

    Nocedal J., Wright S. (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  22. 22

    Phelps, S., Parsons, S., McBurney, P., & Sklar, E. (2002) Co-evolutionary mechanism design: A preliminary report. In Workshop on Agent-Mediated Electronic Commerce, Bologna, Italy, pp. 123–142.

  23. 23

    Phelps, S., Parsons, S., Sklar, E., & McBurney, P. (2003). Using genetic programming to optimise pricing rules for a double-auction market. In Workshop on Agents for Electronic Commerce, Melbourne, Australia.

  24. 24

    Reeves, D. M. (2005). Generating trading agent strategies: Analytic and empirical methods for infinite and large games. PhD thesis, University of Michigan.

  25. 25

    Reeves, D. M., & Wellman, M. P. (2004). Computing best-response strategies in infinite games of incomplete information. In Twentieth Conference on Uncertainty in Artificial Intelligence, Banff, Canada, pp. 470–478.

  26. 26

    Roth A. E., Peranson E. (1999) The redesign of the matching market for American physicians: Some engineering aspects of economic design. American Economic Review 89: 748–780

    Article  Google Scholar 

  27. 27

    Siarry P., Berthiau G., Durbin F., Haussy J. (1997) Enhanced simulated annealing for globally minimizing functions of many continuous variables. ACM Transactions on Mathematical Software 23(2): 209–228

    MathSciNet  MATH  Article  Google Scholar 

  28. 28

    Spall J. C. (2003) Introduction to stochastic search and optimization. Wiley, New York

    MATH  Book  Google Scholar 

  29. 29

    Vorobeychik, Y. (2009). Simulation-based game theoretic analysis of keyword auctions with low-dimensional bidding strategies. In Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, pp. 583–590.

  30. 30

    Vorobeychik, Y., Kiekintveld, C., & Wellman, M. P. (2006). Empirical mechanism design: Methods, with application to a supply-chain scenario. In Seventh ACM Conference on Electronic Commerce, Ann Arbor, MI, pp. 306–315.

  31. 31

    Vorobeychik, Y., & Wellman, M. P. (2008). Stochastic search methods for Nash equilibrium approximation in simulation-based games. In Seventh International Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, pp. 1055–1062.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yevgeniy Vorobeychik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vorobeychik, Y., Reeves, D.M. & Wellman, M.P. Constrained automated mechanism design for infinite games of incomplete information. Auton Agent Multi-Agent Syst 25, 313–351 (2012). https://doi.org/10.1007/s10458-011-9177-2

Download citation

Keywords

  • Computational game theory
  • Computational mechanism design
  • Auctions