Advertisement

Autonomous Agents and Multi-Agent Systems

, Volume 25, Issue 2, pp 284–312 | Cite as

Dependence in games and dependence games

  • Davide Grossi
  • Paolo Turrini
Open Access
Article

Abstract

In the multi-agent systems community, dependence theory and game theory are often presented as two alternative perspectives on the analysis of agent interaction. The paper presents a formal analysis of a notion of dependence between players, given in terms of standard game-theoretic notions of rationality such as dominant strategy and best response. This brings the notion of dependence within the realm of game theory providing it with the sort of mathematical foundations which still lacks. Concretely, the paper presents two results: first, it shows how the proposed notion of dependence allows for an elegant characterization of a property of reciprocity for outcomes in strategic games; and second, it shows how the notion can be used to define new classes of coalitional games, where coalitions can force outcomes only in the presence of reciprocal dependencies.

Keywords

Dependence theory Game theory Multi-agent systems 

Notes

Acknowledgment

The authors would like to thank the anonymous reviewers of AAMAS’10 and COMSOC’10, where previous versions of the work have been presented, and the anonymous reviewers of JAAMAS. Their remarks have been of great help for developing the present version of the work. Davide Grossi wishes to acknowledge support by the Netherlands Organisation for Scientific Research (NWO) under the VENI grant 639.021.816.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Boella, G., Sauro, L., & van der Torre, L. (2005). Admissible agreements among goal-directed agents. In Proceedings of 2005 IEEE/WIC/ACM international conference on intelligent agent technology (IAT’05) (pp. 543–554). USA: IEEE Computer Society.Google Scholar
  2. 2.
    Boella G., Sauro L., van der Torre L. W. N. (2005) Reducing coalition structures via agreement specification. In: Dignum F., Dignum V., Koenig S., Kraus S., Singh M.P., Wooldridge M. (eds) AAMAS. ACM, New York, pp 1187–1188Google Scholar
  3. 3.
    Boella, G., Sauro, L., & van der Torre, L. (2006) Strengthening admissible coalitions. In Proceeding of the 2006 conference on ECAI 2006: 17th European conference on artificial intelligence (pp. 195–199). New York: ACM.Google Scholar
  4. 4.
    Bonzon E., Lagasquie-Schiex M.-C., Lang J. (2009) Dependencies between players in boolean games. International Journal of Approximate Reasoning 50: 899–914MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Castelfranchi C. (1998) Modelling social action for AI agents. Artificial Intelligence 103: 157–182zbMATHCrossRefGoogle Scholar
  6. 6.
    Castelfranchi C., Cesta A., Miceli M. (1992) Dependence relations among autonomous agents. In: Werner E., Demazeau Y. (eds) Decentralized A.I.3. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Coleman J. (1990) Foundations of social theory. Belknap Harvard, CambridgeGoogle Scholar
  8. 8.
    Dunne, P., van der Hoek, W., Kraus, S., & Wooldridge, M. (2008). Cooperative boolean games. In Proceedings of AAMAS 2008 (pp. 1015–1022). New York: ACM.Google Scholar
  9. 9.
    Grossi D., Turrini P. (2010) Dependence theory via game theory. In: Hoek W., Kaminka G. (eds) Proceedings of AAMAS 2010. ACM, New YorkGoogle Scholar
  10. 10.
    Harrenstein P., van der Hoek W., Meyer J.-J.Ch., Witteveen C. (2001) Boolean games. In: Benthem J. (eds) Proceedings of TARK’01. Morgan Kaufmann, San Fransisco, pp 287–298Google Scholar
  11. 11.
    Highsmith P. (1950) Strangers on a train. W.W. Norton, USAGoogle Scholar
  12. 12.
    Moulin H., Peleg B. (1982) Cores of effectivity functions and implementation theory. Journal of Mathematical Economics 10: 115–145MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Osborne M. J., Rubinstein A. (1994) A course in game theory. MIT Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Parikh R. (2002) Social software. Synthese 132(3): 187–211MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sauro L. (2006) Qualitative criteria of admissibility for enforced agreements. Computational & Mathematical Organization Theory 12(2-3): 147–168zbMATHCrossRefGoogle Scholar
  16. 16.
    Sauro L., van der Torre L., Villata S. (2009) Dependency in cooperative boolean games. In: Håkansson A., Nguyen N., Hartung R., Howlett R., Jain L. (eds) Proceedings of KES-AMSTA 2009. LNAI (Vol. 5559). Springer, Heidelberg, pp 1–10Google Scholar
  17. 17.
    Sichman, J. (1998) Depint: Dependence-based coalition formation in an open multi-agent scenario. Journal of Artificial Societies and Social Simulation, 1(2).Google Scholar
  18. 18.
    Sichman, J., & Conte, R. (2002). Multi-agent dependence by dependence graphs. In Proceedings of AAMAS 2002 (pp. 483–490). New York: ACM.Google Scholar
  19. 19.
    von Neumann J., Morgenstern O. (1944) Theory of games and economic behavior. Princeton University Press, PrincetonzbMATHGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations