Skip to main content
Log in

Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Negotiating contracts with multiple interdependent issues may yield non- monotonic, highly uncorrelated preference spaces for the participating agents. These scenarios are specially challenging because the complexity of the agents’ utility functions makes traditional negotiation mechanisms not applicable. There is a number of recent research lines addressing complex negotiations in uncorrelated utility spaces. However, most of them focus on overcoming the problems imposed by the complexity of the scenario, without analyzing the potential consequences of the strategic behavior of the negotiating agents in the models they propose. Analyzing the dynamics of the negotiation process when agents with different strategies interact is necessary to apply these models to real, competitive environments. Specially problematic are high price of anarchy situations, which imply that individual rationality drives the agents towards strategies which yield low individual and social welfares. In scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means that the negotiations fail, and therefore high price of anarchy situations should be avoided in the negotiation mechanisms. In our previous work, we proposed an auction-based negotiation model designed for negotiations about complex contracts when highly uncorrelated, constraint-based utility spaces are involved. This paper performs a strategy analysis of this model, revealing that the approach raises stability concerns, leading to situations with a high (or even infinite) price of anarchy. In addition, a set of techniques to solve this problem are proposed, and an experimental evaluation is performed to validate the adequacy of the proposed approaches to improve the strategic stability of the negotiation process. Finally, incentive-compatibility of the model is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, B., Lesser, V., & Sim, K. (2010). Strategic agents for multi-resource negotiation. Autonomous Agents and Multi-Agent Systems, 1–40. doi:10.1007/s10458-010-9137-2.

  2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., & Roughgarden, T. (2004). The price of stability for network design with fair cost allocation. In FOCS ’04: Proceedings of the 45th annual IEEE symposium on foundations of computer science (pp. 295–304). Washington, DC: IEEE Computer Society. doi:10.1109/FOCS.2004.68.

  3. Bayati M., Shah D., Sharma M. (2008) Max-product for maximum weight matching: Convergence, correctness, and lp duality. IEEE Transactions on Information Theory 54(3): 1241–1251

    Article  MathSciNet  Google Scholar 

  4. Beer M., D’Inverno M., Luck M., Jennings N., Preist C., Schroeder M. (1999) Negotiation in multi-agent systems. Knowledge Engineering Review 14(3): 285–290

    Article  Google Scholar 

  5. Bichler, M., Kaukal, M., & Segev, A. (1999). Multi-attribute auctions for electronic procurement. In Proceedings of the first IBM IAC. Workshop on internet based negotiation technologies, Yorktown Heights, NY.

  6. Buttner, R. (2006). A classification structure for automated negotiations. In WI-IATW ’06: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (pp. 523–530). Washington, DC. doi:10.1109/WI-IATW.2006.7

  7. Chevaleyre Y., Dunne P. E., Endriss U., Lang J., Lemaître M., Maudet N., Padget J., Phelps S., Rodríguez-aguilar J. A., Sousa P. (2006) Issues in multiagent resource allocation. Informatica 30: 2006

    Google Scholar 

  8. Chevaleyre Y., Endriss U., Estivie S., Maudet N. (2008) Multiagent resource allocation in k-additive domains: Preference representation and complexity. Annals of Operations Research 163: 49–62. doi:10.1007/s10479-008-0335-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Choi S.P.M., Liu J., Chan S.P. (2001) A genetic agent-based negotiation system. Computer Networks 37(2): 195–204 (electronic business systems)

    Article  Google Scholar 

  10. Chou, T. C., Fu, L. C., & Liu, K. P. (2007). E-negotiation of dependent multiple issues by using a joint search strategy. In ICRA’07: IEEE international conference on robotics and automation (pp. 1298–1303)

  11. Clarke E. H. (1971) Multipart pricing of public goods. Public Choice 11(1): 17–33. doi:10.1007/BF01726210

    Article  Google Scholar 

  12. Ehtamo H., Hamalainen R. P., Heiskanen P., Teich J., Verkama M., Zionts S. (1999) Generating pareto solutions in a two-party setting: Constraint proposal methods. Management Science 45(12): 1697–1709

    Article  Google Scholar 

  13. Faratin P., Sierra C., Jennings N. R. (1998) Negotiation decision functions for autonomous agents. Robotics and Autonomous Systems 24(3–4): 159–182

    Article  Google Scholar 

  14. Faratin P., Sierra C., Jennings N. R. (2002) Using similarity criteria to make issue trade-offs in automated negotiations. Artificial Intelligence 142(2): 205–237

    Article  MathSciNet  Google Scholar 

  15. Fatima S., Wooldridge M. J., Jennings N. R. (2004) An agenda based framework for multi-issues negotiation. Artificial Intelligent Journal 152(1): 1–45

    Article  MathSciNet  MATH  Google Scholar 

  16. Fatima, S., Wooldridge, M., & Jennings, N. R. (2006). Multi-issue negotiation with deadlines. Journal of Artificial Intelligence Research 27, 381–417. http://eprints.ecs.soton.ac.uk/13079/.

    Google Scholar 

  17. Fatima, S., Wooldridge, M., & Jennings, N. R. (2007). Approximate and online multi-issue negotiation. In AAMAS ’07: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems (pp. 1–8). ACM, New York. doi:10.1145/1329125.1329315

  18. Fatima, S., Wooldridge, M., & Jennings, N. R. (2009). An analysis of feasible solutions for multi-issue negotiation involving nonlinear utility functions. In AAMAS ’09: Proceedings of the 8th international conference on autonomous agents and multiagent systems. Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

  19. Fristrup, P., & Kleiding, H. (1989). A note on asymptotical strategy-proofness. Economics Letters, 31(4), 307–312. http://ideas.repec.org/a/eee/ecolet/v31y1989i4p307-312.html.

    Google Scholar 

  20. Gatti, N., & Amigoni, F. (2005). An approximate pareto optimal cooperative negotiation model for multiple. In IAT ’05: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology (pp. 565–571). Washington, DC: IEEE Computer Society. doi:10.1109/IAT.2005.40

  21. Giovannucci A., Cerquides J., Endriss U., Rodríguez-Aguilar J. (2010) A graphical formalism for mixed multi-unit combinatorial auctions. Autonomous Agents and Multi-Agent Systems 20: 342–368. doi:10.1007/s10458-009-9085-x

    Article  Google Scholar 

  22. Grabisch M. (1997) k-Order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92(2): 167–189. doi:10.1016/S0165-0114(97)00168-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Guttman R. H., Moukas A. G., Maes P. (1998) Agent-mediated electronic commerce: A survey. The Knowledge Engineering Review 13(2): 147–159

    Article  Google Scholar 

  24. Harsanyi J. C. (2004) Games with incomplete information played by bayesian players. Management Science 50(12 Supplement): 1804–1817

    Article  Google Scholar 

  25. He M., Jennings N. R., Leung H. F. (2003) On agent-mediated electronic commerce. IEEE Transactions on Knowledge and Data Engineering 15(4): 985–1003

    Article  Google Scholar 

  26. Hindriks, K., Jonker, C., & Tykhonov, D. (2006). Eliminating interdependencies between issues for multi-issue negotiation. In Cooperative information agents X, lecture notes in computer science, vol 4149, (pp. 301–316). Berlin: Springer.

  27. Hordijk, W. (1995). A measure of landscapes. Working Papers 95-05-049, Santa Fe Institute. http://ideas.repec.org/p/wop/safiwp/95-05-049.html

  28. Horn, J., & Goldberg, D. E. (1994). Genetic algorithm difficulty and the modality of fitness landscapes. In Foundations of genetic algorithms (Vol. 3, pp. 243–269). Los Altos: Morgan Kaufmann.

  29. Hunsberger, L., & Grosz B. J. (2000). A combinatorial auction for collaborative planning. Multi-agent systems. In International Conference on 0:0151. doi:10.1109/ICMAS.2000.858447.

  30. Ito, T., Klein, M., & Hattori, H. (2007). Multi-issue negotiation protocol for agents: Exploring nonlinear utility spaces. In: Proceedings of the 20th international joint conference on artificial intelligence (IJCAI07) (pp. 1347–1352).

  31. Ito T., Klein M., Hattori H. (2008) A multi-issue negotiation protocol among agents with nonlinear utility functions. Journal of Multiagent and Grid Systems 4(1): 67–83

    MATH  Google Scholar 

  32. Jennings N. R. (2001) An agent-based approach for building complex software systems. Communications of the ACM 44(4): 35–41

    Article  Google Scholar 

  33. Jennings N. R., Faratin P., Lomuscio A. R., Parsons S., Sierra C., Wooldridge M. (2001) Automated negotiation: Prospects, methods and challenges. International Journal of Group Decision and Negotiation 10(2): 199–215

    Article  Google Scholar 

  34. Jonker C., Robu V., Treur J. (2007) An agent architecture for multi-attribute negotiation using incomplete preference information. Autonomous Agents and Multi-Agent Systems 15: 221–252. doi:10.1007/s10458-006-9009-y

    Article  Google Scholar 

  35. Kalai E. (1977) Nonsymmetric nash solutions and replications of 2-person bargaining. International Journal of Game Theory 6(3): 129–133. doi:10.1007/BF01774658

    Article  MathSciNet  MATH  Google Scholar 

  36. Keeney R., Raiffa H. (1976) Decisions with multiple objectives: Preferences and value tradeoffs. Wiley, New York

    Google Scholar 

  37. Kersten G. E., Noronha S. J. (1998) Rational agents, contract curves, and inefficient compromises. IEEE Transactions on Systems, Man, and Cybernetics, Part A 28(3): 326–338

    Article  Google Scholar 

  38. Klein, M., Faratin, P., & Bar-Yam, Y. (2002). Using an annealing mediator to solve the prisoners’ dilemma in the negotiation of complex contracts. In AAMAS ’02: Revised papers from the workshop on agent mediated electronic commerce on agent-mediated electronic commerce IV, designing mechanisms and systems (pp. 194–202). London: Springer-Verlag.

  39. Klein M., Faratin P., Sayama H., Bar-Yam Y. (2003) Protocols for negotiating complex contracts. IEEE Intelligent Systems 18(6): 32–38

    Article  Google Scholar 

  40. Kraus, S. (2001a). Automated negotiation and decision making in multiagent environments. In Mutli-agents systems and applications (pp. 150–172). New York, NY: Springer-Verlag Inc.

  41. Kraus S. (2001) Strategic negotiation in multiagent environments. Mit Press, Cambridge, MA

    MATH  Google Scholar 

  42. Kraus S., Sycara K., Evenchick A. (1998) Reaching agreements through argumentation: A logical model and implementation. Artificial Intelligence 1–2: 1–69

    Article  Google Scholar 

  43. Lai, G., Li, C., Sycara, K., & Giampapa, J. (2004). Literature review on multiattribute negotiations. In Technical Report CMU-RI-TR-04-66. Pittsburgh: Robotics Institute, Carnegie Mellon University.

  44. Lai G., Li C., Sycara K. (2006) Efficient multi-attribute negotiation with incomplete information. Group Decision and Negotiation 15(5): 511–528. doi:10.1007/s10726-006-9041-y

    Article  Google Scholar 

  45. Lau, R. Y., Tang, M., & Wong, O. (2004). Towards genetically optimised responsive negotiation agents. In I. C. Society (Ed.) Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology (IAT’04) (pp. 295–301). Beijing: IEEE Computer Society.

  46. Leme, R. P., & Tardos, E. (2010). Pure and bayes-nash price of anarchy for generalized second price auction. In I. press (Ed.) Proceedings of the 51st annual IEEE symposium on foundations of computer science (FOCS 2010).

  47. Lin M.W. (2004) Modeling agent negotiation via fuzzy constraints in e-business. Computational Intelligence 20: 624–642

    Article  MathSciNet  MATH  Google Scholar 

  48. Lopez-Carmona, M. A. (2006). Estrategias de negociación automática basadas en restricciones difusas sobre sistemas multiagente. PhD thesis, Universidad de Alcalá.

  49. Lopez-Carmona, M. A., & Velasco, J. R. (2006). An expressive approach to fuzzy constraint based agent purchase negotiation. In Proceedings of the international joint conference on autonomous agents and multi-agent systems (AAMAS-2006) (pp. 429–431). Japan: Hakodate

  50. Lopez-Carmona, M. A., Velasco, J. R., & Marsa-Maestre, I. (2007). The agents’ attitudes in fuzzy constraint based automated purchase negotiations. In Multi-agent systems and applications V, lecture notes in artificial intelligence (Vol. 4696, pp. 246–255). Berlin: Springer Verlag.

  51. Luo X., Jennings N. R., Shadbolt N., Ho-Fung-Leung, Lee J. H. M. (2003a) A fuzzy constraint based model for bilateral, multi-issue negotiations in semi-competitive environments. Artificial Intelligence 148(1–2): 53–102

    Article  MathSciNet  MATH  Google Scholar 

  52. Luo X., Lee J. H., Leung H. F., Jennings N. R. (2003b) Prioritised fuzzy constraint satisfaction problems: Axioms, instantiation and validation. Fuzzy Sets and Systems 136(2): 151–188

    Article  MathSciNet  MATH  Google Scholar 

  53. Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of the fitness landscape. In Proceedings of the fourth international conference on genetic algorithms, San Diego, CA (pp. 1143–150).

  54. Marsa-Maestre, I., Lopez-Carmona, M. A., Velasco, J. R., & de la Hoz, E. (2009a). Effective bidding and deal identification for negotiations in highly nonlinear scenarios. In Proceedings of the VIII international conference on autonomous agents and multiagent systems (AAMAS 2009) (pp. 1057–1064).

  55. Marsa-Maestre, I., Lopez-Carmona, M. A., Velasco, J. R., Ito T., Fujita, K., & Klein, M. (2009b). Balancing utility and deal probability for negotiations in highly nonlinear utility spaces. In Proceedings of the twenty-first international joint conference on artificial intelligence (IJCAI-09) (pp. 214–219).

  56. Marsa-Maestre, I., Lopez-Carmona, M. A., Velasco, J. R., de la Hoz, E. (2010). Avoiding the prisoner’s dilemma in auction-based negotiations for highly rugged utility spaces. In Proceedings of 9th international conference on autonomous agents and multiagent systems (AAMAS 2010) (pp. 425–432).

  57. Miller B. L., Goldberg D. E. (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Systems 9(3): 193–212

    MathSciNet  Google Scholar 

  58. Myerson R. B. (1983) Mechanism design by an informed principal. Econometrica 51(6): 1767–1797

    Article  MathSciNet  MATH  Google Scholar 

  59. Nash J. F. (1950) The bargaining problem. Econometrica 18(2): 155–162

    Article  MathSciNet  MATH  Google Scholar 

  60. Nash J. F. (1953) Two-person cooperative games. Econometrica 21(1): 128–140

    Article  MathSciNet  MATH  Google Scholar 

  61. Nisan N. (2006) Bidding languages. In: Cramton P., Shoham Y., Steinberg R. (eds) Combinatorial auctions. MIT Press, Cambridge, MA

    Google Scholar 

  62. Osborne M., Rubinstein A. (1990) Bargaining and markets. The Academic Press, San Diego

    MATH  Google Scholar 

  63. Papadimitriou, C. (2001). Algorithms, games, and the internet. In: STOC ’01: Proceedings of the thirty-third annual ACM symposium on theory of computing (pp. 749–753). New York, NY: ACM. doi:10.1145/380752.380883

  64. Parkes D. C., Kalagnanam J. (2005) Models for iterative multiattribute procurement auctions. Management Science 51(3): 435–451. doi:10.1287/mnsc.1040.0340

    Article  Google Scholar 

  65. Poundstone W. (1993) Prisoner’s dilemma. Anchor, New York

    Google Scholar 

  66. Rahwan I., Ramchurn S. D., Jennings N. R., Mcburney P., Parsons S., Sonenberg L. (2003) Argumentation-based negotiation. Knowledge Engineering Review 18(4): 343–375. doi:10.1017/S0269888904000098

    Article  Google Scholar 

  67. Raiffa H. (1982) The art and science of negotiation. Harvard University Press, Cambridge, MA

    Google Scholar 

  68. Reeves, D. M., & Wellman, M. P. (2004). Computing best-response strategies in infinite games of incomplete information. In UAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intelligence (pp. 470–478). Arlington, VA: AUAI Press.

  69. Robu V., Somefun D. J. A., & La Poutré J. A. (2005). Modeling complex multi-issue negotiations using utility graphs. In AAMAS ’05: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (pp. 280–287). New York, NY: ACM.

  70. Ros R., Sierra C. (2006) A negotiation meta strategy combining trade-off and concession moves. Autonomous Agents and Multi-Agent Systems 12(2): 163–181. doi:10.1007/s10458-006-5837-z

    Article  Google Scholar 

  71. Rosenschein J. S., Zlotkin G. (1994) Rules of encounter. MIT Press, Cambridge, MA

    Google Scholar 

  72. Sakurai, Y., Yokoo, M., & Kamei, K. (2000). An efficient approximate algorithm for winner determination in combinatorial auctions. In EC ’00: Proceedings of the 2nd ACM conference on electronic commerce (pp. 30–37). New York, NY: ACM. doi:10.1145/352871.352875

  73. Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1–2), 1–54. doi:10.1016/S0004-3702(01)00159-X, http://www.sciencedirect.com/science/article/B6TYF-4475Y1H-1/2/aafde63993109762200291d55309bf2e

  74. Sawaragi Y., Nakayama H., Tanino T. (1985) Theory of multiobjective optimization. Academic Press, New York

    MATH  Google Scholar 

  75. Shi, C., Luo, J., & Lin, F. (2006) A multi-agent negotiation model applied in multi-objective optimization. In Agent computing and multi-agent systems (pp. 305–314).

  76. Sierra C. (2004) Agent-mediated electronic commerce. Autonomous Agents and Multi-Agent Systems 9: 285–301

    Article  Google Scholar 

  77. Teich J. E., Wallenius H., Wallenius J., Zaitsev A. (1999) A multiple unit auction algorithm: Some theory and a web implementation. Electronic Markets 9(3): 199–205

    Article  Google Scholar 

  78. Teich, J. E., Wallenius, H., Wallenius, J., Zaitsev, A. (2006). A multi-attribute e-auction mechanism for procurement: Theoretical foundations. European Journal of Operational Research, 175(1):90–100. doi:10.1016/j.ejor.2005.04.023, http://www.sciencedirect.com/science/article/B6VCT-4GH49SH-1/2/617b408205d1df0a41b488455fcfa127

    Google Scholar 

  79. Tomassini M., Vanneschi L., Collard P., Clergue M. (2005) A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary computation 13(2): 213–239. doi:10.1162/1063656054088549

    Article  Google Scholar 

  80. Vassilev, V. K., Fogarty, T. C., & Miller, J. F. (2003). Smoothness, ruggedness and neutrality of fitness landscapes: from theory to application (pp. 3–44). New York, NY: Springer-Verlag, Inc.

  81. Vetsikas I., Jennings N. (2010) Bidding strategies for realistic multi-unit sealed-bid auctions. Autonomous Agents and Multi-Agent Systems 21: 265–291. doi:10.1007/s10458-009-9109-6

    Article  Google Scholar 

  82. Volgenant, A. (2002). Solving some lexicographic multi-objective combinatorial problems. European Journal of Operational Research, 139(3):578–584. doi:10.1016/S0377-2217(01)00214-4, http://www.sciencedirect.com/science/article/B6VCT-45DBB6C-9/2/d228ddb90c316574e86a4a8ee6278aba

  83. Weiss G. (1999) Multiagent Systems: A modern approach to distributed artificial intelligence. MIT Press, Cambridge MA, USA

    Google Scholar 

  84. Wierzbicki A. P., Kruś L., Makowski M. (1993) The role of multi-objective optimization in negotiation and mediation support. Theory and Decision 34(3): 201–214. doi:10.1007/BF01075189

    Article  Google Scholar 

  85. Woodruff R. S. (1952). Confidence intervals for medians and other position measures. Journal of the American Statistical Association, 47(260), 635–646. http://www.jstor.org/stable/2280781

    Google Scholar 

  86. Xia, M., Stallaert, J., & Whinston, A. B. (2005). Solving the combinatorial double auction problem. European Journal of Operational Research, 164(1), 239–251. doi:10.1016/j.ejor.2003.11.018, http://www.sciencedirect.com/science/article/B6VCT-4BN0J81-2/2/4a0255f0b884b4203ed8c3899fd84e58

    Google Scholar 

  87. Yager R. (2007) Multi-agent negotiation using linguistically expressed mediation rules. Group Decision and Negotiation 16(1): 1–23

    Article  Google Scholar 

  88. Yokoo M. (2001) Distributed constraint satisfaction. Springer Verlag, Berline

    Book  MATH  Google Scholar 

  89. Zhang X., Lesser V., Abdallah S. (2005) Efficient management of multi-linked negotiation based on a formalized model. Autonomous Agents and Multi-Agent Systems 10: 165–205. doi:10.1007/s10458-004-6978-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Lopez-Carmona.

Additional information

M. A. Lopez-Carmona and I. Marsa-Maestre are visiting scholars at Massachusetts Institute of Technology (MIT) from Universidad de Alcala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Carmona, M.A., Marsa-Maestre, I., Klein, M. et al. Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces. Auton Agent Multi-Agent Syst 24, 485–535 (2012). https://doi.org/10.1007/s10458-010-9159-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-010-9159-9

Keywords

Navigation