Autonomous Agents and Multi-Agent Systems

, Volume 24, Issue 1, pp 141–174 | Cite as

Implicit: a multi-agent recommendation system for web search

  • Aliaksandr BirukouEmail author
  • Enrico Blanzieri
  • Paolo Giorgini


For people with non-ordinary interests, it is hard to search for information on the Internet because search engines are impersonalized and are more focused on “average” individuals with “standard” preferences. In order to improve web search for a community of people with similar but specific interests, we propose to use the implicit knowledge contained in the search behavior of groups of users. We developed a multi-agent recommendation system called Implicit, which supports web search for groups or communities of people. In Implicit, agents observe behavior of their users to learn about the “culture” of the community with specific interests. They facilitate sharing of knowledge about relevant links within the community by means of recommendations. The agents also recommend contacts, i.e., who in the community is the right person to ask for a specific topic. Experimental evaluation shows that Implicit improves the quality of the web search in terms of precision and recall.


Implicit Culture Multi-agent system Personal agents Recommendation system Web search Collaborative search Communities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In VLDB’94: Proceedings of the 20th international conference on very large data bases (pp. 487–499). San Francisco, CA: Morgan Kaufmann Publishers Inc.Google Scholar
  2. 2.
    Almeida, R., & Almeida, V. (2004). A community-aware search engine. In Proceedings of the 13th international conference on World Wide Web.Google Scholar
  3. 3.
    August K. G., Hansen M. H., Shriver E. (2001) Mobile web searching. Bell Labs Technical Journal 6(2): 84–98CrossRefGoogle Scholar
  4. 4.
    Balabanović M., Shoham Y. (1997) Fab: Content-based, collaborative recommendation. Communications of the ACM 40(3): 66–72CrossRefGoogle Scholar
  5. 5.
    Baldi P., Frasconi P., Smyth P. (2003) Modeling the Internet and the Web: Probabilistic methods and algorithms. Wiley, LondonGoogle Scholar
  6. 6.
    Bellifemine F. L., Caire G., Greenwood D. (2007) Developing multi-agent systems with jade (Wiley series in agent technology). Wiley, LondonCrossRefGoogle Scholar
  7. 7.
    Birukou A. (2009) Implicit Culture Framework for behavior transfer. VDM Verlag, SaabruckenGoogle Scholar
  8. 8.
    Birukou, A., Blanzieri, E., & Giorgini, P. (2005). Implicit: An agent-based recommendation system for web search. In AAMAS ’05: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (pp. 618–624). New York: ACM Press.Google Scholar
  9. 9.
    Birukou, A., Blanzieri, E., Giorgini, P., & Weiss, M. (2006). A multi-agent system for choosing software patterns. Technical Report DIT-06-065. University of Trento.Google Scholar
  10. 10.
    Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., Kokash, N., & Modena, A. (2007). Ic-service: A service-oriented approach to the development of recommendation systems. In Proceedings of ACM symposium on applied computing. Special Track on Web Technologies (pp. 1683–1688). New York: ACM Press.Google Scholar
  11. 11.
    Birukou A., Blanzieri E., D’Andrea V., Giorgini P., Kokash N. (2007) Improving web service discovery with usage data. IEEE Software 24(6): 47–54CrossRefGoogle Scholar
  12. 12.
    Birukou, A., Blanzieri, E., Giorgini, P., & Giunchiglia, F. (2009). A formal definition of culture. In Proceedings of the workshop on modeling intercultural collaboration and negotiation (MICON) at IJCAI’09. Povo: DISI, University of Trento.Google Scholar
  13. 13.
    Blanzieri, E., & Giorgini, P. (2000). From collaborative filtering to Implicit Culture: A general agent-based framework. In Proceedings of the workshop on agents and recommender systems, Barcelona.Google Scholar
  14. 14.
    Burke R. (2002) Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4): 331–370CrossRefzbMATHGoogle Scholar
  15. 15.
    Chau M., Zeng D., Chen H., Huang M., Hendriawan D. (2003) Design and evaluation of a multi-agent collaborative web mining system. Decision Support Systems 35(1): 167–183CrossRefGoogle Scholar
  16. 16.
    Chen, L., & Sycara, K. (1998). Webmate: A personal agent for browsing and searching. In AGENTS’98: Proceedings of the second international conference on Autonomous agents (pp. 132–139) New York: ACM Press.Google Scholar
  17. 17.
    Church K., Smyth B., Cotter P., Bradley K. (2007) Mobile information access: A study of emerging search behavior on the mobile Internet. ACM Transactions on the Web 1(1): 4CrossRefGoogle Scholar
  18. 18.
    Dieberger A. (1997) Supporting social navigation on the world wide web. International Journal of Human-Computer Studies 46: 805–825CrossRefGoogle Scholar
  19. 19.
    Dieberger A., Dourish P., HööK., Resnick P., Wexelblat A. (2000) Social navigation: Techniques for building more usable systems. interactions 7(6): 36–45CrossRefGoogle Scholar
  20. 20.
    Dourish, P., & Chalmers, M. (1994). Running out of space: Models of information navigation, short paper. In HCI’94, Glasgow, August.Google Scholar
  21. 21.
    Dreyfus H. L., Dreyfus S. E. (2000) Mind over machine: The power of human intuition and expertise in the era of the computer. The Free Press, New YorkGoogle Scholar
  22. 22.
    Dron, J. (2005). Control, termites and e-learning. In Proceedings of IADIS international conference web based communities 2005, pp. 103–110.Google Scholar
  23. 23.
    Dupret, G. E., & Piwowarski, B. (2008). A user browsing model to predict search engine click data from past observations. In SIGIR’08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 331–338). New York: ACM.Google Scholar
  24. 24.
    Erickson, T., & Kellogg, W. A. (2003). Designing Information Spaces: The Social Navigation Approach, chapter Social Translucence: Using Minimalist Visualisations of Social Activity to Support Collective Interaction, pages 17–41. Springer Verlag.Google Scholar
  25. 25.
    Farzan, R., & Brusilovsky, P. (2007). Community-based conference navigator. In Proceedings of sociUM workshop (1st workshop on “Adaptation and personalisation in social systems: Groups, teams, communities”) at UM2007.Google Scholar
  26. 26.
    Fox S., Karnawat K., Mydland M., Dumais S., White T. (2005) Evaluating implicit measures to improve web search. ACM Transactions on Information Systems 23(2): 147–168CrossRefGoogle Scholar
  27. 27.
    Geczy P., Izumi N., Akaho S., Hasida K. (2007) Knowledge worker Intranet behaviour and usability. International Journal of Business Intelligence and Data Mining 2(4): 447–470CrossRefGoogle Scholar
  28. 28.
    Gori M., Witten I. (2005) The bubble of web visibility. Communications of the ACM 48(3): 115–117CrossRefGoogle Scholar
  29. 29.
    Gwizdka, J., & Chignell, M. (1999). Towards information retrieval measures for evaluation of Web search engines, unpublished manuscript. Available at
  30. 30.
    Herlocker J. L., Konstan J. A., Terveen L. G., Riedl J. T. (2004) Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1): 5–53CrossRefGoogle Scholar
  31. 31.
    Hong, Y., He, X., Vaidya, J., Adam, N., & Atluri, V. (2009). Effective anonymization of query logs. In CIKM’09: Proceeding of the 18th ACM conference on Information and knowledge management (pp. 1465–1468). New York: ACM.Google Scholar
  32. 32.
    Huberman, B. A., & Kaminsky, M. (1996). Beehive: A system for cooperative filtering and sharing of information. Technical report, Xerox Palo Alto Research Center.Google Scholar
  33. 33.
    Ishikawa, H., Ohta, M., Yokoyama, S., Watanabe, T., & Katayama, K. (2003). Active knowledge mining for intelligent web page management. In Knowledge-based intelligent information and engineering systems: 7th international conference, KES 2003. Proceedings, Part I, Volume 2773 of Lecture notes in computer science (pp. 975–983). Oxford: Springer.Google Scholar
  34. 34.
    Ji, S., Zhou, K., Liao, C., Zheng, Z., Xue, G. R., Chapelle, O., Sun, G., & Zha, H. (2009). Global ranking by exploiting user clicks. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 35–42). New York: ACM.Google Scholar
  35. 35.
    Kobayashi M., Takeda K. (2000) Information retrieval on the web. ACM Computing Surveys 32(2): 144–173CrossRefGoogle Scholar
  36. 36.
    Kobsa, A. (2001). Tailoring privacy to users’ needs. In UM’01: Proceedings of the 8th international conference on User modeling 2001 (pp. 303–313). London: Springer.Google Scholar
  37. 37.
    König, A. C., Gamon, M., & Wu, Q. (2009). Click-through prediction for news queries. In SIGIR’09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 347–354). New York: ACM.Google Scholar
  38. 38.
    Konstan J. A., Miller B. N., Maltz D., Herlocker J. L., Gordon L. R., Riedl J. (1997) Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM 40(3): 77–87CrossRefGoogle Scholar
  39. 39.
    Lieberman, H. (1995). Letizia: An agent that assists web browsing. In C. S. Mellish (Ed.), Proceedings of the fourteenth international joint conference on artificial intelligence (IJCAI-95) (pp. 924–929). Montreal/San Mateo: Morgan Kaufmann publishers Inc.Google Scholar
  40. 40.
    Lin W., Alvarez S. A., Ruiz C. (2002) Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery 6(1): 83–105CrossRefMathSciNetGoogle Scholar
  41. 41.
    Linden G., Smith B., York J. (2003) recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1): 76–80CrossRefGoogle Scholar
  42. 42.
    Lopes A. L., Botelho L. M. (2008) Improving multi-agent based resource coordination in peer-to-peer networks. Journal of Networks 3(2): 38CrossRefGoogle Scholar
  43. 43.
    Massa, P., & Avesani, P. (2007). Trust-aware recommender systems. In RecSys’07: Proceedings of the 2007 ACM conference on Recommender systems (pp. 17–24). New York: ACM.Google Scholar
  44. 44.
    Menczer Filippo (2003) Complementing search engines with online web mining agents. Decision Support System 35(2): 195–212CrossRefGoogle Scholar
  45. 45.
    Middleton S. E., Shadbolt N. R., De Roure D. C. (2004) Ontological user profiling in recommender systems. ACM Transactions on Information Systems 22(1): 54–88CrossRefGoogle Scholar
  46. 46.
    Nonaka I., Takeuchi H. (1995) The knowledge creating company. Oxford University Press, New YorkGoogle Scholar
  47. 47.
    Passadore, A., Grosso, A., & Boccalatte, A. (2009). Indexing enterprise knowledge bases with agentseeker. In WOA 2009. 10th National Workshop “From Objects to Agents”.Google Scholar
  48. 48.
    Sarini, M., Blanzieri, E., Giorgini, P., & Moser, C. (2004). From actions to suggestions: Supporting the work of biologists through laboratory notebooks. In Proceedings of 6th international conference on The design of cooperative systems (COOP2004) (pp. 131–146). French Riviera: IOS Press.Google Scholar
  49. 49.
    Schwab I., Kobsa A. (2002) Adaptivity through unobstrusive learning. KI 16(3): 5–9Google Scholar
  50. 50.
    Singh M. P., Yu B., Venkatraman M. (2001) Community-based service location. Communications of the ACM 44(4): 49–54CrossRefGoogle Scholar
  51. 51.
    Smyth B., Balfe E., Freyne J., Briggs P., Coyle M., Boydell O. (2005) Exploiting query repetition and regularity in an adaptive community-based web search engine. User Modeling and User-Adapted Interaction 14(5): 383–423CrossRefGoogle Scholar
  52. 52.
    Somlo, G. L., & Howe, A. E. (2003). Using web helper agent profiles in query generation. In AAMAS’03: Proceedings of the second international joint conference on Autonomous agents and multiagent systems (pp. 812–818). New York: ACM.Google Scholar
  53. 53.
    Sun, X., Wang, H., & Li, J. (2009). Injecting purpose and trust into data anonymisation. In CIKM’09: Proceeding of the 18th ACM conference on Information and knowledge management (pp. 1541–1544). New York: ACM.Google Scholar
  54. 54.
    Turner, R., Turner, E., Wagner, T., Wheeler, T., & Ogle, N. (2001). Using explicit, a priori contextual knowledge in an intelligent web search agent. In Modeling and using context (pp. 343–352). Berlin: Springer.Google Scholar
  55. 55.
    van den Berg, B., van Es, R., Tattersall, C., Janssen, J., Manderveld, J., Brouns, F., Kurvers, H., & Koper, R. (2005). Swarm-based sequencing recommendations in e-learning. In Proceedings of the 2005 5th international conference on intelligent systems design and applications (ISDA 05).Google Scholar
  56. 56.
    Vignollet, L., Plu, M., Marty, J. C., & Agosto, L. (2005). Regulation mechanisms in an open social media using a contact recommender system. In Proceedings of the second communities and technologies conference (pp. 419–436).Google Scholar
  57. 57.
    Walter F., Battiston S., Schweitzer F. (2008) A model of a trust-based recommendation system on a social network. Autonomous Agents and Multi-Agent Systems 16(1): 57–74CrossRefGoogle Scholar
  58. 58.
    Wei Y., Jennings N., Moreau L., Hall W. (2008) User evaluation of a market-based recommender system. Autonomous Agents and Multi-Agent Systems 17(2): 251–269CrossRefGoogle Scholar
  59. 59.
    Wei Y. Z., Moreau L., Jennings N. R. (2005) A market-based approach to recommender systems. ACM Transactions on Information Systems 23(3): 227–266CrossRefGoogle Scholar
  60. 60.
    Yu, B., & Singh, M. P. (2002). An agent-based approach to knowledge management. In CIKM’02: Proceedings of the eleventh international conference on Information and knowledge management (pp. 642–644). New York: ACM Press.Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Aliaksandr Birukou
    • 1
    Email author
  • Enrico Blanzieri
    • 1
  • Paolo Giorgini
    • 1
  1. 1.University of TrentoTrentoItaly

Personalised recommendations