Petri Net Plans

A framework for collaboration and coordination in multi-robot systems

Abstract

Programming the behavior of multi-robot systems is a challenging task which has a key role in developing effective systems in many application domains. In this paper, we present Petri Net Plans (PNPs), a language based on Petri Nets (PNs), which allows for intuitive and effective robot and multi-robot behavior design. PNPs are very expressive and support a rich set of features that are critical to develop robotic applications, including sensing, interrupts and concurrency. As a central feature, PNPs allow for a formal analysis of plans based on standard PN tools. Moreover, PNPs are suitable for modeling multi-robot systems and the developed behaviors can be executed in a distributed setting, while preserving the properties of the modeled system. PNPs have been deployed in several robotic platforms in different application domains. In this paper, we report three case studies, which address complex single robot plans, coordination and collaboration.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Akharware, N. (2005). Pipe2: Platform independent petri net editor. M.Sc. thesis, Imperial College of Science, Technology and Medicine, University of London, London, UK.

  2. 2

    Calisi, D., Censi, A., Iocchi, L., & Nardi, D. (2008, September). OpenRDK: a modular framework for robotic software development. In Proceedings of international conference on intelligent robots and systems (IROS), pp. 1872–1877.

  3. 3

    Calisi D., Farinelli A., Iocchi L., Nardi D. (2007) Multi-objective exploration and search for autonomous rescue robots. Journal of Field Robotics, Special Issue on Quantitative Performance Evaluation of Robotic and Intelligent Systems 24: 763–777

    Google Scholar 

  4. 4

    Celaya, J. R., Desrochers, A. A., & Graves, R. J. (2007). Modeling and analysis of multi-agent systems using petri nets. In IEEE international conference on systems, man and cybernetics (ISIC), pp. 1439–1444.

  5. 5

    Chaimowicz, L., Campos, M. F. M., & Kumar, V. (2002, May). Dynamic role assignment for cooperative robots. In Proceedings of the 2002 IEEE international conference on robotics and automation (ICRA02), pp. 292–298, Washington, DC

  6. 6

    Cohen P. R., Levesque H. J. (1991) Teamwork. Special Issue on Cognitive Science and Artificial Intelligence 25: 486–512

    Google Scholar 

  7. 7

    Coradeschi S., Saffiotti A. (2003) An introduction to the anchoring problem. Robotics and Autonomous Systems 43(2–3): 85–96

    Article  Google Scholar 

  8. 8

    Cost, R. S., Chen, Y., Finin, T., Labrou, Y. K., & Peng, Y. (2000). Using colored petri nets for conversation modeling, Vol. 1916 of Lecture Notes in AI (pp. 178–192). Berlin: Springer.

  9. 9

    Costelha, H., & Lima, P. (2007). Modelling, analysis and execution of robotic tasks using petri nets. In IEEE/RSJ international conference on Intelligent robots and systems (IROS), pp. 1449–1454, October 29–November 2, 2007.

  10. 10

    De Giacomo, G., Iocchi, L., Nardi, D., & Rosati, R. (1997). Planning with sensing for a mobile robot. In Proceedings of 4th European conference on planning (ECP’97).

  11. 11

    Giacomo G., Lespérance Y., Levesque H. J. (2000) Congolog, a concurrent programming language based on the situation calculus. Artificial Intelligence 121(1–2): 109–169

    MathSciNet  MATH  Article  Google Scholar 

  12. 12

    de Silva, L., Sardina S., & Padgham, L. (2009). First principles planning in bdi systems. In AAMAS ’09: Proceedings of the 8th international conference on Autonomous agents and multiagent systems, pp. 1105–1112. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2009.

  13. 13

    Dias, M. B., & Stentz, A. T. (2001, August). A market approach to multirobot coordination. Technical Report CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

  14. 14

    Dias, M. D., & Stentz, A. (2002, September) Opportunistic optimization for market-based multirobot control. In 2002 IEEE/RSJ international conference on Intelligent robots and systems (IROS’02), pp. 2714–2720.

  15. 15

    Durfee, E. H. (1999). Distributed problem solving and planning. In G. Weiss (Ed.), Multiagent systems: A modern approach to distributed artificial intelligence (pp. 121–164). Cambridge: MIT Press.

  16. 16

    Farinelli, A., Iocchi, L., Nardi, D., & Ziparo, V. A. (2006). Assignment of dynamically perceived tasks by token passing in multi-robot systems. Proceedings of the IEEE, Special issue on multi-robot systems, 94(7), 1271–1288. ISSN:0018-9219.

  17. 17

    Ferber J. (1999) Multi-agent systems. Addison-Wesley, Boston

    Google Scholar 

  18. 18

    Fikes R., Nilsson N. (1971) STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2: 189–208

    MATH  Article  Google Scholar 

  19. 19

    Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. PhD thesis, Yale.

  20. 20

    Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous architecture for controlling real-world mobile robots. In Proceedings of the tenth national conference on artificial intelligence, pp. 809–815.

  21. 21

    Gat, E. (1997, February). ESL: A language for supporting robust plan execution in embedded autonomous agents. In Proceedings of the IEEE aerospace conference (Vol. 1, pp. 319–324). Aspen, CO: Snowmass.

  22. 22

    Georgeff, M. P., & Lansky, A. L. (1986). Procedural knowledge. In Proceedings of the IEEE special issue on knowledge representation, Vol. 74, pp. 1383–1398.

  23. 23

    Gerkey, B., & Matarić, M. J. (2000, December). Principled communication for dynamic multi-robot task allocation. In Proceedings of the international symposium on experimental robotics, pp. 353–362, Waikiki, Hawaii.

  24. 24

    Giordano V., Ballal P., Lewis F., Turchiano B., Zhang J.B. (2006) Supervisory control of mobile sensor networks: Math formulation, simulation, and implementation. IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics 36(4): 554–562

    Article  Google Scholar 

  25. 25

    Gutnik G., Kaminka G. A. (2006) Representing conversations for scalable overhearing. Journal of Artificial Intelligence Research 25(1): 349–387

    Google Scholar 

  26. 26

    Herrero-Perez D., Martinez-Barbera H. (2010) Modeling distributed transportation systems composed of flexible automated guided vehicles in flexible manufacturing systems. IEEE Transactions on Industrial Informatics 6(2): 166–180

    Article  Google Scholar 

  27. 27

    Iocchi L., Nardi D., Piaggio M., Sgorbissa A. (2003) Distributed coordination in heterogeneous multi-robot systems. Autonomous Robots 15(2): 155–168

    Article  Google Scholar 

  28. 28

    Kaminka, G. A., & Frenkel, I. (2005). Flexible teamwork in behavior-based robots. In AAAI, pp. 108–113.

  29. 29

    King J., Pretty R. K., Gosine R. G. (2003) Coordinated execution of tasks in a multiagent environment. IEEE Transactions on Systems, Man, and Cybernetics, Part A 33(5): 615–619

    Article  Google Scholar 

  30. 30

    Kobt, Y. T., Beauchemin, S. S., & Barron, J. L. (2007). Petri net-based cooperation in multi-agent systems. In Proceedings of 4th Canadian conference on computer and robot vision, 2007

  31. 31

    Konolige K. (1997) COLBERT: A language for reactive control in Saphira. Lecture Notes in Computer Science 1303: 31–50

    Google Scholar 

  32. 32

    Konolige K., Myers K. L., Ruspini E. H., Saffiotti A. (1997) The Saphira architecture: A design for autonomy. Journal of Experimental and Theoretical Artificial Intelligence 9(1): 215–235

    Article  Google Scholar 

  33. 33

    Kontes, G., & Lagoudakis, M. G. (2007). Coordinated team play in the four-legged robocup league. In Proceedings of IEEE international conference on Tools with artificial intelligence (ICTAI), Vol. 1, pp. 109–116.

  34. 34

    Kress-Gazit H., Fainekos G. E., Pappa G. J. (2009) Temporal logic-based reactive mission and motion planning. IEEE Transactions on Robotics 25(6): 1370–1381

    Article  Google Scholar 

  35. 35

    Kuo, C.-H., & Lin, I.-H. (2006). Modeling and control of autonomous soccer robots using distributed agent oriented petri nets. In IEEE international conference on Systems, man and cybernetics (SMC apos), Vol. 5, pp. 4090–4095.

  36. 36

    Loetzsch, M., Risler, M., & Jungel, M. (2006). Xabsl—A pragmatic approach to behavior engineering. In IEEE/RSJ international conference on Intelligent robots and systems, 2006, pp. 5124–5129.

  37. 37

    Lima, D., & Milutinovic, P. (2002). Petri net models of robotic tasks. In IEEE international conference on Robotics and Automation (ICRA’02).

  38. 38

    Maier, C., & Moldt, D. (2001). Object coloured petri nets—A formal technique for object oriented modelling. Concurrent object-oriented programming and petri nets: Advances in petri nets, pp. 406–427.

  39. 39

    McCarthy J., Hayes P. (1969) Some philisophical problems from the standpoint of artificial intelligence. Machine Intelligence 4: 463–502

    MATH  Google Scholar 

  40. 40

    Murata T. (1989) Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4): 541–580

    Article  Google Scholar 

  41. 41

    Palamara, P. F., Ziparo, V. A., Iocchi, L., Nardi, D., Lima, P., & Costelha, H. (2008). A robotic soccer passing task using petri net plans (demo paper). In D. Parkes, J. P. Müller, L. Padgham, & S. Parsons (Eds.), Proceedings of 7th international conference on Autonomous agents and multiagent systems (AAMAS 2008) (pp. 1711–1712). Estoril, Portugal: IFAAMAS Press.

  42. 42

    Parker L. E. (1998) ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Transactions on Robotics and Automation 14(2): 220–240

    Article  Google Scholar 

  43. 43

    Poutakidis, D., Padgham, L., & Winikoff, M. (1998). Debugging Multi-agent systems using design artifacts: The case of interaction protocols. In Proceedings of 1998 IEEE international conference on Systems, man and cybernetics, San Diego, USA.

  44. 44

    Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In J. Allen, R. Fikes, & E. Sandewall (Eds.), Proceedings of the second international conference on Principles of knowledge representation and reasoning. San Mateo: Morgan Kaufmann.

  45. 45

    Reiter R. (2001) Knowledge in action: Logical foundations for describing and implementing dynamical systems. MIT Press, Cambridge

    Google Scholar 

  46. 46

    Russell S. J., Norvig P. (2003) Artificial intelligence: A modern approach (2nd ed.). Pearson Education, Singapore

    Google Scholar 

  47. 47

    Scherl, R., & Levesque, H. J. (1993). The frame problem and knowledge producing actions. In Proceedings of the 11th national conference on Artificial intelligence (AAAI’93), pp. 689–695.

  48. 48

    Sheng, W., & Yang, Q. (2005, July 24–28). Peer-to-peer multi-robot coordination algorithms: Petri net based analysis and design. In Proceedings, 2005 IEEE/ASME international conference on Advanced intelligent mechatronics, pp. 1407–1412.

  49. 49

    Simmons, R., & Apfelbaum, D. (1998, October). A task description language for robot control. In Proceedings of IEEE/RSJ international conference on Intelligent robots and systems (IROS), Vol. 3, pp. 1931–1937. Victoria, BC, Canada.

  50. 50

    Sudeikat J., Braubach L., Pokahr A., Lamersdorf W. (2006) Validation of bdi agents. In: Bordini R., Dastani M., Dix J., El Fallah Seghrouchni A. (eds) The 4th international workshop on Programming multiagent systems (PROMAS-2006). Springer, Berlin, pp 185–200

    Google Scholar 

  51. 51

    Tambe M. (1997) Towards flexible teamwork. Journal of Artificial Intelligence Research 7: 83–124

    Google Scholar 

  52. 52

    Thrun S., Burgard W., Fox D. (2005) Probabilistic Robotics (Intelligent robotics and autonomous agents). The MIT Press, Cambridge

    Google Scholar 

  53. 53

    Vishwanadham N., Narahari Y. (1992) Performance modelling of automated manufacturing systems. Prentice Hall, New Delhi

    Google Scholar 

  54. 54

    Wang F. Y., Kyriakopoulos K. J., Tsolkas A., Saridis G. N. (1993) A petri-net coordination model for an intelligent mobile robot. IEEE Transactions on Robotics and Automation 9(3): 257–271

    Article  Google Scholar 

  55. 55

    Werger, B. B., & Mataric, M. J. (2000). Broadcast of local eligibility for multi-target observation. In DARS00, pp. 347–356.

  56. 56

    Xu, D., Volz, R., Ioerger, T., & Yen, J. (2002). Modeling and verifying multi-agent behaviors using predicate/transition nets. In SEKE ’02: Proceedings of the 14th international conference on Software engineering and knowledge engineering (pp. 193–200), New York, NY: ACM.

  57. 57

    Zimmermann, A., & Freiheit, J. (1998). TimeNETMS-an integrated modeling and performance evaluation tool for manufacturing systems. In Proceedings of 1998 IEEE international conference on Systems, man and cybernetics. San Diego, USA.

  58. 58

    Ziparo, V. A., & Iocchi, L. (2006). Petri net plans. In Proceedings of fourth international workshop on modeling of objects, components, and agents (MOCA), pp. 267–290, Turku, Finland. Bericht 272, FBI-HH-B-272/06.

  59. 59

    Ziparo, V. A., Iocchi, L., Nardi, D., Palamara, P. F., & Costelha, H. (2008). Petri net plans: a formal model for representation and execution of multi-robot plans. In AAMAS ’08: Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems (pp. 79–86). Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

  60. 60

    Zlot, R., Stenz, A., Dias, M. B., & Thayer, S. (2002). Multi robot exploration controlled by a market economy. In IEEE international conference on robotics and automation (ICRA’02), pp. 3016–3023.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Ziparo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ziparo, V.A., Iocchi, L., Lima, P.U. et al. Petri Net Plans. Auton Agent Multi-Agent Syst 23, 344–383 (2011). https://doi.org/10.1007/s10458-010-9146-1

Download citation

Keywords

  • Petri Nets
  • Multi-robot systems
  • Formal models
  • Plan representation and execution