Autonomous Agents and Multi-Agent Systems

, Volume 17, Issue 3, pp 372–396 | Cite as

Technology diffusion: analysing the diffusion of agent technologies

  • Jez McKean
  • Hayden Shorter
  • Michael Luck
  • Peter McBurney
  • Steven Willmott
Article

Abstract

Despite several examples of deployed agent systems, there remain barriers to the large-scale adoption of agent technologies. In order to understand these barriers, this paper considers aspects of marketing theory which deal with diffusion of innovations and their relevance to the agents domain and the current state of diffusion of agent technologies. In particular, the paper examines the role of standards in the adoption of new technologies, describes the agent standards landscape, and compares the development and diffusion of agent technologies with that of object-oriented programming. The paper also reports on a simulation model developed in order to consider different trajectories for the adoption of agent technologies, with trajectories based on various assumptions regarding industry structure and the existence of competing technology standards. We present details of the simulation model and its assumptions, along with the results of the simulation exercises.

Keywords

Agents Multi-agent systems Simulation models Technology diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aart, C., van Marcke, K. Pels, R. F., & Smulders, J. L. F. C. (2002). International insurance traffic with software agents. In F. van Harmelen (Ed.), Proceedings of the Fifteenth European Conference on Artificial Intelligence. IOS Press.Google Scholar
  2. 2.
    Baxter J. and Hepplewhite R. (1999). Agents in tank battle simulations. Communications of the ACM 42(3): 74–75 CrossRefGoogle Scholar
  3. 3.
    Bazzan A.L.C. (2005). A distributed approach for coordination of traffic signal agents. Journal of Autonomous Agents and Multiagent Systems 10(2): 131–164 CrossRefGoogle Scholar
  4. 4.
    Dahl O.-J. (2002). The roots of object orientation: The Simula language. In: Broy, M. and Denert, E. (eds) Software pioneers: contributions to software engineering. Programming, Software Engineering and Operating Systems Series, pp. Springer, Heidelberg Google Scholar
  5. 5.
    Dahl, O.-J., & Nygaard, K. (1965). SIMULA: A language for programming and description of discrete event systems. Introduction and user’s manual. Technical Report 11, Norwegian Computing Centre, Oslo, Norway.Google Scholar
  6. 6.
    Darley, V., & Sanders, D. (2004). An agent-based model of a corrugated-box factory: The trade-off between finished goods stock and on-time-in-full delivery. In H. Coelho & B. Espinasse (Eds.), Proceedings of the Fifth Workshop on Agent-Based Simulation.Google Scholar
  7. 7.
    Dorer, K., & Calisti, M. (2005). An adaptive solution to dynamic transport optimiation. In M. Pechoucek, D. Steiner, & S. Thompson (Eds.) Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems: Industry Track. (pp. 45–51). ACM Press.Google Scholar
  8. 8.
    Du T.C., Li E.Y. and Chang A.P. (2003). Mobile agents in distributed network management. Communications of the ACM 46(7): 127–132 CrossRefGoogle Scholar
  9. 9.
    Fagiolo G. and Dosi G. (2003). Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents. Structural Change and Economic Dynamics 14: 237–273 CrossRefGoogle Scholar
  10. 10.
    Gilbert, N., Pyka, A., & Ahrweiler, P. (2001). Innovation networks-a simulation approach. Journal of Artificial Societies and Social Simulation, 4(3).Google Scholar
  11. 11.
    Gomes, L. (1998). Ventures column. Wall Street Journal.Google Scholar
  12. 12.
    Hardie I. and MacKenzie D. (2007). Assembling an economic actor: The agencement of a Hedge Fund. The Sociological Review 55(1): 57–80 CrossRefGoogle Scholar
  13. 13.
    Hill, R., Chen, J., Gratch, J., Rosenbloom, P., & Tambe, M. (1997). Intelligent agents for the synthetic battlefield. In: Joint Proceedings of the Fourteenth National Conference on Artificial Intelligence and the Ninth Conference on Innovative Applications of Artificial Intelligence (pp. 1006–1012). Providence, RI, USA.Google Scholar
  14. 14.
    Himoff, J., Skobelev, P., & Wooldridge, M. (2005). MAGENTA Technology: Multi-agent systems for industrial logistics. In M. Pechoucek, D. Steiner, & S. Thompson (Eds.), Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems: Industry Track (pp. 60–66). ACM Press.Google Scholar
  15. 15.
    IDC. (2005). Worldwide Mobile Phone 2005–2009 Forecast & Analysis Report (Report 33290). International Data Corporation.Google Scholar
  16. 16.
    Jacobi, S., Madrigal-Mora, C., Leon-Soto, E., & Fischer, K. (2005). Agent steel: An agentbased online system for the planning and observation of steel production. In AAMAS ’05: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 114–119) ACM Press: New York, NY, USA.Google Scholar
  17. 17.
    Krishna V. (2002). Auction theory. Academic Press, San Diego, CA, USA Google Scholar
  18. 18.
    Levitt T. (1965). Exploit the product life cycle. Harvard Business Review 43(6): 81–94 Google Scholar
  19. 19.
    Lilien G.L., Kotler P. and Moorthy K.S. (1992). Marketing models. Prentice-Hall, Englewood Cliffs, NJ, USA Google Scholar
  20. 20.
    Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as Interaction. A roadmap for agent based computing. AgentLink III.Google Scholar
  21. 21.
    Mahajan, V., Muller, E., & Bass, F. M. (1993). New-product diffusion models. In J. Eliashberg & G. L. Lilien (Eds.), Handbooks in operations research and management science, Marketing (Vol. 5, pp. 349–408). Amsterdam: North-Holland.Google Scholar
  22. 22.
    McKean, J., Shorter, H., McBurney, P., & Luck, M. (2005). The AgentLink III Technology Diffusion Model. Technical Report ULCS-05-008, Department of Computer Science, University of Liverpool, Liverpool, UK.Google Scholar
  23. 23.
    Midgley D.F. (1977). Innovation and new product marketing. Croom Helm, London Google Scholar
  24. 24.
    Midgley D.F., Marks R.E. and Kunchamwar D. (2007). Building and assurance of agentbased models: An example and challenge to the field. Journal of Business Research 60(8): 884–893 CrossRefGoogle Scholar
  25. 25.
    Moore G.A. (1991). Crossing the chasm: Marketing and selling high-tech products to mainstream consumers. HarperCollins, New York City, NY, USA Google Scholar
  26. 26.
    Morgan M. (2002). Symposium on Marshall’s Tendencies: 1 How models help economists to know. Economics and Philosophy 18: 5–16 Google Scholar
  27. 27.
    Munroe S., Miller T., Belecheanu R., Pechoucek M., McBurney P. and Luck M. (2006). Crossing the agent technology chasm: Lessons, experiences and challenges in commercial applications of agents. Knowledge Engineering Review 21(4): 345–392 CrossRefGoogle Scholar
  28. 28.
    Nicolaisen J., Petrov V. and Tesfatsion L. (2001). Market power and efficiency in a computational electricity market with discriminatory double-auction pricing. IEEE Transactions on Evolutionary Computation 5(5): 504–523 CrossRefGoogle Scholar
  29. 29.
    Norman T.J., Preece A., Chalmers S., Jennings N.R., Luck M., Dang V.D., Nguyen T.D., Deora V., Shao J., Gray W.A. and Fiddian N.J. (2004). Agent-based formation of virtual organisations. Knowledge-Based Systems 17: 103–111 CrossRefGoogle Scholar
  30. 30.
    Rogers E.M. (1962). Diffusion of innovations. The Free Press, New York City, NY, USA Google Scholar
  31. 31.
    Rubinstein A. (1998). Modeling bounded rationality. Zeuthen Lecture Book Series. MIT Press, Cambridge, MA, USA Google Scholar
  32. 32.
    Silverberg G. and Verspagen B (2005). A percolation model of innovation in complex technology spaces. Journal of Economic Dynamics and Control 29(1–2): 225–244 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Stroustrup, B. (1985). The C++ Programming Language. Addison Wesley.Google Scholar
  34. 34.
    Sutton J. (2000). Marshall’s tendencies: What can economists know?. MIT Press, Cambridge, MA, USA Google Scholar
  35. 35.
    Urban G.L. and Hauser J.R. (1993). Design and marketing of new products. Prentice-Hall, Englewood Cliffs, NJ, USA Google Scholar
  36. 36.
    Wagner, T., Gasser, L., & Luck, M. (2005). Impact for agents. In M. Pechoucek, D. Steiner, & S. Thompson (Eds.), Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems: Industry Track (pp. 93–99). ACM Press.Google Scholar
  37. 37.
    Weitzel T. (2004). Economics of standards in information networks. Information Age Economy Series. Heidelberg, Physica Google Scholar
  38. 38.
    Westarp F. (2003). Modeling software markets: Empirical analysis, network simulations and marketing implications. Information Age Economy Series. Physica, Heidelberg Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jez McKean
    • 1
  • Hayden Shorter
    • 2
  • Michael Luck
    • 3
  • Peter McBurney
    • 4
  • Steven Willmott
    • 5
  1. 1.JazzleWavertee, LiverpoolUK
  2. 2.Aepona LtdBelfastUK
  3. 3.Department of Computer ScienceKing’s College LondonStrand, LondonUK
  4. 4.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  5. 5.Dept Llenguatges i Sistemes InformaticsUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations