Abstract
The potential of agroforestry systems (AFS) for atmospheric carbon sequestration in degraded tropical lands is of key interest for climate change and rural development policies. This study evaluated aboveground and soil (0–20 cm) carbon stocks of AFS, secondary forests (SF), conserved and logged mature forests, on 88 sites in the eastern Brazilian Amazon. Tree carbon stock was higher in young (< 10 years) and advanced (> 30 years) AFS (10.2 ± 2.0 and 47.2 ± 8.1 Mg ha−1, respectively) when compared to the same age SF (5.8 ± 2.5 and 26.5 ± 19.5 Mg ha−1). However, aboveground and total carbon stocks were statistically similar within the same age categories of AFS and SF, because shrub pool were higher in SF. Conserved mature forests had the highest carbon stocks (190.2 ± 11.0 Mg ha−1), and carbon stocks in logged mature forests (119.4 ± 5.1 Mg ha−1) were similar to the advanced stages of AFS (108.6 ± 7.5 Mg ha−1). Litter and soil organic carbon (SOC) did not differ significantly between land-use systems nor along succession. At 30 years, aboveground carbon recovery was 46% (± 16) in AFS and 35% (± 21) in SF. Vegetation structural diversity (measured by DBH and height variation) was a good predictor of aboveground carbon stocks. Our results show the potential of AFS for carbon recovery, especially in the tree pool at late stages of development. Structurally more complex AFS provide an alternative to recover degraded lands and to develop synergies between climate change mitigation, adaptation, and goods production in Amazon.
This is a preview of subscription content, access via your institution.




References
Ali A, Mattsson E (2017) Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Sci Total Environ 575:6–11. https://doi.org/10.1016/j.scitotenv.2016.10.022
Ali A, Yan E-R, Chen HYH et al (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13:4627–4635. https://doi.org/10.5194/bg-13-4627-2016
Ali A, Lin S-L, He J-K et al (2019a) Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For Ecol Manage 432:823–831. https://doi.org/10.1016/j.foreco.2018.10.024
Ali A, Lin S-L, He J-K et al (2019b) Climatic water availability is the main limiting factor of biotic attributes across large-scale elevational gradients in tropical forests. Sci Total Environ 647:1211–1221. https://doi.org/10.1016/j.scitotenv.2018.08.072
Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507
Andrade JM, Estévez-Pérez MG (2014) Statistical comparison of the slopes of two regression lines: a tutorial. Anal Chim Acta 838:1–12. https://doi.org/10.1016/j.aca.2014.04.057
Andrade H, Segura M, Somarriba E, Villalobos M (2008) Valoración biofísica y financiera de la fijación de carbono por uso del suelo en fincas cacaoteras indígenas de Talamanca, Costa Rica. Agroforestería En Las Américas 46:45–50
Aragão LEOC, Poulter B, Barlow JB et al (2014) Environmental change and the carbon balance of Amazonian forests. Biol Rev 89:913–931. https://doi.org/10.1111/brv.12088
Arevalo LA, Alegre JC, Vilcahuaman LJM (2002) Metodologia para Estimar o Estoque de Carbono em Diferentes Sistemas de Uso da Terra. Colombo, Embrapa Floresta, p 38
Bernal B, Murray LT, Pearson TR (2018) Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag 13(1):22
Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer (FAO Forestry Paper-134). 134 FAO- Food and Agriculture Organization of the United Nations
Brown S (2002) Measuring, monitoring, and verification of carbon benefits for forest–based projects. Philos Trans R Soc London, Ser A 360:1669–1683. https://doi.org/10.1098/rsta.2002.1026
Brown IF, Martinelli LA, Thomas WW et al (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. For Ecol Manage 75:175–189. https://doi.org/10.1016/0378-1127(94)03512-U
Cardinael R, Guenet B, Chevallier T et al (2018) High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system - Combining experimental and modeling approaches. Biogeosciences 15:297–317. https://doi.org/10.5194/bg-15-297-2018
Cardozo EG, Muchavisoy HM, Silva HR et al (2015) Species richness increases income in agroforestry systems of eastern Amazonia. Agrofor Syst 89:901–916. https://doi.org/10.1007/s10457-015-9823-9
Cardozo EG, Rousseau GX, Celentano D et al (2018) Efecto de la riqueza de especies y la estructura de la vegetación en el almacenamiento de carbono en sistemas agroforestales en la Amazonía sur de Bolivia. Rev Biol Trop 66:1481. https://doi.org/10.15517/rbt.v66i4.32489
Celentano D, Rousseau GX, Muniz FH et al (2017) Towards zero deforestation and forest restoration in the Amazon region of Maranhão state, Brazil. Land Use Policy 68:692–698. https://doi.org/10.1016/j.landusepol.2017.07.041
Celentano D, Rousseau GX, Paixão LS et al (2020) Carbon sequestration and nutrient cycling in agroforestry systems on degraded soils of Eastern Amazon, Brazil. Agroforest Syst 94:1781–1792. https://doi.org/10.1007/s10457-020-00496-4
Celentano D, Moraes M, Ferreira J et al (2022) Forest restoration to promote a fair post COVID-19 recovery in the Brazilian Amazon. Land Use Policy 116:106706. https://doi.org/10.1016/j.landusepol.2022.106076
Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. https://doi.org/10.1007/s00442-005-0100-x
Chave J, Réjou-Méchain M, Búrquez A et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190. https://doi.org/10.1111/gcb.12629
Chazdon RL, Broadbent EN, Rozendaal DMA et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv. https://doi.org/10.1126/sciadv.1501639
Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132. https://doi.org/10.1126/science.1183506
Dixon RK, Solomon AM, Brown S et al (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190. https://doi.org/10.1126/science.263.5144.185
do Martinelli GC, Schlindwein MM, Padovan MP, Gimenes RMT (2019) Decreasing uncertainties and reversing paradigms on the economic performance of agroforestry systems in Brazil. Land Use Policy 80:274–286. https://doi.org/10.1016/j.landusepol.2018.09.019
Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agr Ecosyst Environ 254:117–129. https://doi.org/10.1016/j.agee.2017.11.032
Ferreira J, Lennox GD, Gardner TA et al (2018) Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat Clim Chang 8:744–749
Fujisaki K, Perrin AS, Desjardins T et al (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Change Biol 21:2773–2786. https://doi.org/10.1111/gcb.12906
Gehring C, Park S, Denich M (2004) Liana allometric biomass equations for Amazonian primary and secondary forest. For Ecol Manage 195:69–83. https://doi.org/10.1016/j.foreco.2004.02.054
Gehring C, Park S, Denich M (2008) Close relationship between diameters at 30cm height and at breast height (DBH). Acta Amazon 38:71–76. https://doi.org/10.1590/S0044-59672008000100008
Gehring C, Zelarayán MLC, Almeida RB, Moraes FHR (2011) Allometria da palmeira babaçu em um agroecossistema de derruba-e-queima na periferia este da Amazônia. Acta Amazon 41:127–134. https://doi.org/10.1590/S0044-59672011000100015
Hudson LN, Newbold T, Contu S et al (2014) The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol Evol 4:4701–4735. https://doi.org/10.1002/ece3.1303
IBGE (2012) Manual Técnico da Vegetação Brasileira, Instituto Brasileiro de Geografia e Estatística - IBGE.
Jakovac CC, Dutrieux LP, Siti L et al (2017) Spatial and temporal dynamics of shifting cultivation in the middle -Amazonas river: expansion and intensification. PLoS ONE 12:e0181092. https://doi.org/10.1371/journal.pone.0181092
Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86:105–111. https://doi.org/10.1007/s10457-012-9573-x
Leite MFA, Luz RL, Muchavisoy KHM et al (2016) The effect of land use on aboveground biomass and soil quality indicators in spontaneous forests and agroforests of eastern Amazonia. Agrofor Syst 90:1009–1023. https://doi.org/10.1007/s10457-015-9880-0
Lennox GD, Berenguer E, Gardner TA et al (2018) Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob Change Biol 24:5680–5694. https://doi.org/10.1111/gcb.14443
Lewis SL, Wheeler CE, Mitchard ETA, Koch A (2019) Regenerate natural forests to store carbon. Nature 568:25–28
Li Y, Bao W, Bongers F et al (2019) Drivers of tree carbon storage in subtropical forests. Sci Total Environ 654:684–693. https://doi.org/10.1016/j.scitotenv.2018.11.024
Martin PA, Newton AC, Bullock JM (2013) Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc b: Biol Sci 280:20132236. https://doi.org/10.1098/rspb.2013.2236
Mendiburu F (2017) Package ‘agricolae’: Statistical procedures for agricultural research. R Found. Stat. Comput, Vienna
Mensah S, du Toit B, Seifert T (2018) Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects. Oecologia 187:783–795. https://doi.org/10.1007/s00442-018-4144-0
Moraes JL, Cerri CC, Melillo JM et al (1995) Soil carbon stocks of the Brazilian Amazon Basin. Soil Sci Soc Am J 59:244–247. https://doi.org/10.2136/sssaj1995.03615995005900010038x
Murphy B, Rawson A, Ravenscroft L, et al (2003) Paired site sampling for soil carbon estimation - new South Wales. Australian Greenhouse Office National Carbon Accounting System Technical Report
Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agroforest Syst. https://doi.org/10.1007/s10457-011-9434-z
Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci. https://doi.org/10.1002/jpln.200800030
Nelson BW, Mesquita R, Pereira JLG et al (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167. https://doi.org/10.1016/S0378-1127(98)00475-7
Nogueira EM, Fearnside PM, Nelson BW (2008) Normalization of wood density in biomass estimates of Amazon forests. For Ecol Manage 256:990–996. https://doi.org/10.1016/j.foreco.2008.06.001
Nunes S, Oliveira L, Siqueira J et al (2020) Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ Res Lett. https://doi.org/10.1088/1748-9326/ab76db
Oksanen J, Blanchet F, Kindt R, et al (2015) Vegan: community ecology. R package version 2.2–1
Pearson T, Walker S, Brown S (2005) Sourcebook for Land use, Land-use change and forestry projects. Winrock International and the BioCarbon Fund of the World Bank, Washington
Peng SL, Hou YP, Chen BM (2009) Vegetation restoration and its effects on carbon balance in Guangdong Province China. Restor Ecol 17(4):487–494. https://doi.org/10.1111/j.1526-100X.2008.00399.x
Poorter L, Bongers F, Aide TM et al (2016) Biomass resilience of Neotropical secondary forests. Nature 530:211–214. https://doi.org/10.1038/nature16512
Poorter L, van der Sande MT, Arets EJMM et al (2017) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 26:1423–1434. https://doi.org/10.1111/geb.12668
Porro R (2005) Palms, pastures, and swidden fields: the grounded political ecology of “agro-extractive/shifting-cultivator peasants” in Maranhão, Brazil. Hum Ecol 33:17–56. https://doi.org/10.1007/s10745-005-1654-2
Powers JS, Marín-Spiotta E (2017) Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu Rev Ecol Evol Syst 48:497–519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541. https://doi.org/10.5194/bg-7-1515-2010
Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC (2017) Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agrofor Syst. https://doi.org/10.1007/s10457-017-0131-4
Rappaport DI, Morton DC, Longo M et al (2018) Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ Res Lett 13(6):065013
Santos PZF, Crouzeilles R, Sansevero JBB (2019) Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For Ecol Manage 433:140–145. https://doi.org/10.1016/j.foreco.2018.10.064
Schroth G, D’Angelo SA, Teixeira WG et al (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For Ecol Manage 163:131–150. https://doi.org/10.1016/S0378-1127(01)00537-0
Shi S, Zhang W, Zhang P et al (2013) A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For Ecol Manage 296:53–63. https://doi.org/10.1016/j.foreco.2013.01.026
Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev 29:3886–3897. https://doi.org/10.1002/ldr.3136
Silva Junior CHL, Aragão LEOC, Barlow J et al (2018) Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos Trans R Soc b: Biol Sci. https://doi.org/10.1098/rstb.2018.0043
Silva Junior CHL, Heinrich VHA, Freire ATG et al (2020) Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data 7:1–9. https://doi.org/10.1038/s41597-020-00600-4
Smith CC, Espírito-Santo FDB, Healey JR et al (2020) Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob Change Biol 26:7006–7020. https://doi.org/10.1111/gcb.15352
The R Development Core Team (2017) R: A language and environment for statistical computing [WWW Document]. ISBN 3–900051–07–0.
Tremblay S, Lucotte M, Revéret J-P et al (2015) Agroforestry systems as a profitable alternative to slash and burn practices in small-scale agriculture of the Brazilian Amazon. Agrofor Syst 89:193–204. https://doi.org/10.1007/s10457-014-9753-y
Villa PM, Martins SV, Oliveira-Neto SN et al (2020) Policy forum: Shifting cultivation and agroforestry in the Amazon: premises for REDD+. Forest Policy Econ 118:102217. https://doi.org/10.1016/j.forpol.2020.102217
Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variation in digestion conditions and of inorganic soil constituents. Soil Sci 37:29–38. https://doi.org/10.1097/00010694-193401000-00003
Walter K, Don A, Tiemeyer B, Freibauer A (2016) Determining soil bulk density for carbon stock calculations: a systematic method comparison. Soil Sci Soc Am J 80:579–591. https://doi.org/10.2136/sssaj2015.11.0407
Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, Media
Yachi S, Loreau M (2007) Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol Lett 10:54–62. https://doi.org/10.1111/j.1461-0248.2006.00994.x
Zanne AE, Lopez-Gonzalez G, Coomes DA, et al (2009) Global wood density database. Dryad Identifier:
Zarin DJ, Davidson EA, Brondizio E et al (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front Ecol Environ 3(7):365–369
Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. J Ecol 103:1245–1252. https://doi.org/10.1111/1365-2745.12425
Zomer RJ, Neufeldt H, Xu J et al (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://doi.org/10.1038/srep29987
Acknowledgements
The authors are grateful for the financial support received from Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil National Research Council (CNPq), Foundation for Research and Scientific and Technological Development of Maranhão (FAPEMA), the logistical support provided by INCRA, Tomé-Açu Agricultural Cooperative (CAMTA) and the State University of Maranhão (UEMA). We appreciated the collaboration of many students who assisted us in the field and in the laboratory. We thank all the farmers that participated in this study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cardozo, E.G., Celentano, D., Rousseau, G.X. et al. Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agroforest Syst 96, 941–956 (2022). https://doi.org/10.1007/s10457-022-00754-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10457-022-00754-7
Keywords
- Amazon
- Forest succession
- Biomass
- Stand structure
- Secondary forest