Skip to main content

Advertisement

Log in

Carbon dynamics in small tropical catchments under preserved forest and cacao agroforestry systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Inland waters such as streams that receive carbon from terrestrial landscapes usually have a net heterotrophic metabolism and emit significant amounts of CO2 to the atmosphere. This research aims to analyze the role of hydrological routes to transport the dissolved inorganic carbon (DIC) and pCO2 concentration in stream water and describe their dynamics by comparing two small catchments under tropical preserved forest (TPF) and cacao agroforestry system (CAS) during distinct rainfall regimes. The sampling occurred weekly (for twenty-one weeks) from September to December 2012 and from April to June 2013. The pCO2 in stream water (SW) was calculated using total alkalinity and pH data. The DIC of soil solution (SS) and surface runoff (SR) were measured through a TOC analyzer. The SS and SR have different patterns of influence on the DIC concentrations in the streams. The DIC concentrations were higher in CAS than in TPF. The pCO2 in CAS was eight and sixteen times higher than TPF in dry and rainy periods, respectively. Fluxes in both areas were significantly elevated during the rainy period compared to the dry period. DIC fluxes were higher in CAS than TPF during both periods (CAS: 1.72 and 19.1 kg ha−1 year−1 and TPF: 0.10 and 2.82 kg ha−1 year−1 to dry and rainy periods, respectively). Based on these results and previous studies involving C fluxes, it is possible that the cacao agroforestry system promotes changes in stream water metabolism, considerably raising pCO2 and DIC concentrations, probably owing to organic matter created by cacao vegetation without management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Yes—all data are fully available without restriction.

Code availability

Not applicable.

References

  • Aufdenkampe AK, Mayorga E, John I et al (2007) Organic matter in the Peruvian headwaters of the Amazon: compositional evolution from the Andes to the lowland Amazon mainstem. Org Geochem 38:337–364

    CAS  Google Scholar 

  • Augusto GS, Martins PFS, Góes AVM (2004) Propriedades físicas do solo sob as culturas do cacau (Theobroma cacao L.), da pupunha (Batris gaesipaes H.B.K.) e do açaí (Euterpe oleracea Mart.) em cultivo tradicional. Rev Ciênc Agrárias 42:221–230

    Google Scholar 

  • Billett MFSM, Palmer D, Hope C et al (2004) Linking land-atmosphere stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles. https://doi.org/10.1029/2003GB002058

    Article  Google Scholar 

  • Cai W, Wang Y (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers. Limnol Oceanogr 43:657–668

    CAS  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments. Mar Freshw Res 52:101–1104

    CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating Inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Google Scholar 

  • Costa END, Souza JC, Pereira MA et al (2017) Influence of hydrological routes on dissolved organic carbon fluxes in tropical streams. Ecol Evol 7:228–239

    PubMed  Google Scholar 

  • Costa END, Souza MFL, Marrocos PCL et al (2018) Soil organic matter and CO2 fluxes in small tropical watersheds under forest and cacao agroforestry. PLoS ONE. https://doi.org/10.1371/journal.pone.0200550

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Figueiredo RO, Markewitz D et al (2010) Dissolved CO2 in small catchment streams of eastern Amazonia: a minor pathway of terrestrial carbon loss. J Geophys Res. https://doi.org/10.1029/2009JG001202

    Article  Google Scholar 

  • Davidson EA, Trumbore SE (1995) Gas diffusivity and production of CO2 in deep soils of the eastern Amazon. Tellus b: Chemical Phys Meteorol 47:550–565

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A Comparison of the equilibrium constants for the dissociation of carbonic acid in Seawater media. Deep Sea Res Part A 34:1733–1743

    CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H2 (g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    CAS  Google Scholar 

  • Eckhardt BW, Moore R (1990) Controls on dissolved organic carbon concentrations in streams, southern Quebec. Can J Fish Aquat Sci 47:1537–1544

    CAS  Google Scholar 

  • Faria D, Paciencia MLB, Dixo MBO et al (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting. Biodivers Conserv 16:2335–2357

    Google Scholar 

  • Finaly JC (2003) Controls of stream water dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry 62:231–252

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324

    CAS  PubMed  Google Scholar 

  • Instituto de estudos sócio-ambientais do sul da Bahia - IESB. Plano de Manejo do Parque Estadual da Serra do Conduru (PESC) (2005)

  • Jansen B, Kalbitz K, McDowell WH (2014) Dissolved Organic Matter: Linking Soils and Aquatic Systems. Vadose Zone J. https://doi.org/10.2136/vzj2014.05.0051

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Riha SJ et al (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett. https://doi.org/10.1029/2008GL034619

    Article  Google Scholar 

  • Johnson MS, Lehmann J, Couto EG et al (2006) DOC and DIC in flowpaths of Amazonian headwater catchments with hydrologically contrasting soils. Biogeochemistry 81:45–57

    CAS  Google Scholar 

  • Johnson MS, Billett MF, Dinsmore KJ et al (2010) Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems method and applications. Ecohydrology 3:68–77

    CAS  Google Scholar 

  • Jones JB, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–196

    CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1992) The flux of CO2 and CH4 from lakes and rivers in arctic Alaska. Hydrobiologia 240:23–36

    CAS  Google Scholar 

  • Kumar BM, Nair PKR (2011) Carbon sequestration potential of agroforestry systems-opportunities and challenges. Springer, Dordrecht

    Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/ CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.D. Department of Energy, Oak Ridge, Tenessee

  • Lobão DE, Setenta WC, Valle RR (2004) Sistema Agrossivicultural Cacaueiro. Agrossilvicultura 1:63–173

    Google Scholar 

  • Martins PFS, Augusto SG (2012) Propriedades físicas do solo e sistema radicular do cacaueiro, da pupunheira e do açaizeiro na Amazônia oriental. Revista Ceres 59:723–730

    Google Scholar 

  • Mbow C, Smith P, Skole DL, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Google Scholar 

  • Müller MW, Gama-Rodrigues AC (2007) Sistemas Agroflorestais com cacaueiro. In. Valle RR (ed) Ciência, tecnologia e manejo do cacaueiro. Ceplac, Ilhéus, pp 246–271

  • Neal C, House WA, Down K (1998a) An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements. Sci Total Environ 210:173–185

    Google Scholar 

  • Neal C, Harrow M, Williams RJ (1998) Dissolved carbon dioxide and oxygen in the River Thames: spring-summer, 1997. Sci Total Environ 210:205–217

    Google Scholar 

  • Neill C, Deegan LA, Thomas SM et al (2006) Deforestation alters channel hydraulic and biogeochemical characteristics of small lowland Amazonian streams. Hydrol Process 20:2563–2580

    CAS  Google Scholar 

  • Nojosa GBA, Resende ML, Aguilar MAG et al (2003) Componentes fenólicos e enzimas oxidativas em clones de Theobroma cacao resistentes e Suscetíveis a Crinipellis perniciosa. Fitopatol Bras 28:148–154

    Google Scholar 

  • Öquist MG, Wallin M, Seibert J et al (2009) Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. Environ Sci Technol 43:7364–7369

    PubMed  Google Scholar 

  • Prasad MBK, Kaushal SS, Murtugudde R (2013) Long-term pCO2 dynamics in rivers in the Chesapeake Bay watershed. App Geochem 31:209–215

    CAS  Google Scholar 

  • Pulleman M, Tietema A (1999) Microbial C and N transformation during drying and rewetting of coniferous forest floor material. Soil Biol Biochem 31:275–285

    CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    CAS  PubMed  Google Scholar 

  • Rier ST, Tuchman NC, Wetzel RG et al (2002) Elevated CO2 induced changes in the chemistry of quaking aspen (Populus tremuloides ichaux) leaf litter: subsequent mass lossand microbial response in a stream ecosystem. J N Am Benthol Soc 21:16–27

    Google Scholar 

  • Rier ST, Tuchman NC, Wetzel RG (2005) Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem. Can J Fish Aquat Sci 62:185–194

    CAS  Google Scholar 

  • Rosa MBS (2007) Dinâmica do Carbono em Pequenas Bacias de Drenagem Sob Uso de Agricultura Familiar na Amazônia Oriental. Dissertation, Universidade Federal do Pará

  • Rosa MBS, Figueiredo RO, Markewitz D et al (2017) Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon. Rev Ambient Água. https://doi.org/10.4136/ambi-agua.2040

    Article  Google Scholar 

  • Ruf F, Schroth G (2004) Chocolate forests and monocultures-an historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, Fonseca GAB, Harvey CA et al (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 107–134

    Google Scholar 

  • Salimon CI, Davidson EA, Victoria RL et al (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biol 10:833–843

    Google Scholar 

  • Salomão MSMB, Cole JJ, Clemente CA et al (2008) CO2 and O2 dynamics in human-impacted watersheds in the state of São Paulo, Brazil. Biogeochemistry 88:271–283

    Google Scholar 

  • Sambuichi RHR, Vidal DB, Piasentin FB et al (2012) Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodivers Conserv 2:1055–1077

    Google Scholar 

  • Sand-Jensen K, Frost-Christensen H (1998) Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams. Oecologia 117:31–39

    PubMed  Google Scholar 

  • Schroth G, Faria D, Araujo M et al (2011) Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodives Conserv 20:1635–1654

    Google Scholar 

  • Schroth G, Bede LC, Paiva AO et al (2013) Contribution of agroforests to landscape carbon storage. Mitigation Adapt Strategies Global Change 7:1175–1190

    Google Scholar 

  • Semarh (2012). Parque Estadual da Serra do Conduru, importância do Parque Estadual da Serra do Conduru. http://www.semarh.ba.gov.br/conteudo.aspx?s=PESERRACandp=PARQEST. Accessed 23 Sep 2014

  • Smith SV, Crossland JIM, Crossland CJ (1999) Mexican and Central American coastal lagoon systems: carbon, nitrogen and phosphorus fluxes (Regional Workshop III). Core Project of the International Geosphere-Biosphere Programme: A study of Global Change IGBP. Loicz Reports & Studies.

  • Souza JCS, Pereira MA, Costa END et al (2017) Nitrogen dynamics in soil solution under different land uses: Atlantic forest and cacao-cabruca system. Agrofor Syst 2:425–435

    Google Scholar 

  • Tuchman NC, Wetzel RG, Rier ST et al (2002) Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biol 8:163–170

    Google Scholar 

  • Tuchman NC, Wahtera KA, Wetzel RG et al (2003) Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495:203–211

    CAS  Google Scholar 

  • Wang X, Veizer J (2000) Respiration–photosynthesis balance of terrestrial aquatic ecosystems, Ottawa area, Canada. GCA 68:3775–3786

    Google Scholar 

  • Zepeda Y, Schroth G, Hernandez R (2010) Complementary environmental service reward programmes for sustainable mosaic landscapes in the Sierra Madre de Chiapas, Mexico. Mountain Forum Bull 21:80–82

    Google Scholar 

Download references

Acknowledgements

We thank the landowners Divanete Souza and Veet Pramad for letting us work on their lands, to all technicians at UESC for fieldwork, and the technician Natalia Singelo de Lima for TOC analysis. This work is part of the National Institute of Science and Technology’s Continent-Ocean Transfer of Materials Project, funded by CNPq- Conselho Nacional de Desenvolvimento Científico e Tecnológico (Process No. 573.601/2008-9 URL: www.cnpq.br/) and supported by grant from FAPESB—Fundação de Amparo à Pesquisa do Estado da Bahia (PPP0040/2011 URL: www.fapesb.ba.gov.br/) and Universidade Estadual de Santa Cruz (PROPP 0220.1100.899 URL: www.uesc.br).

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (573.601/2008–9); Fundação de Amparo à Pesquisa do Estado da Bahia (PPP0040/2011) Universidade Estadual de Santa Cruz (PROPP 0220.1100.899).

Author information

Authors and Affiliations

Authors

Contributions

Marcelo Friederichs Landim de Souza (Methodology); Daniela Mariano Lopes da Silva (Project administration); Eline Nayara Dantas da Costa, Jéssica Carneiro de Souza, Marilane Andrade Pereira, and Weber F. Landim de Souza (Data collection and analyses); Eline Nayara Dantas da Costa (Writing – original draft); Eline Nayara Dantas da Costa, Marcelo Friederichs Landim de Souza and Daniela Mariano Lopes da Silva (Writing – review & editing).

Corresponding author

Correspondence to Eline Nayara Dantas da Costa.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, E.N.D., de Souza, J.C., Pereira, M.A. et al. Carbon dynamics in small tropical catchments under preserved forest and cacao agroforestry systems. Agroforest Syst 95, 1647–1659 (2021). https://doi.org/10.1007/s10457-021-00671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-021-00671-1

Keywords

Navigation